簡易檢索 / 詳目顯示

研究生: 李宜叡
Lee, Yi-Jui
論文名稱: 應用於太陽能發電平滑化之儲能系統操作策略與容量規劃
Operation Strategies and Sizing of ESS for PV Generation Smoothing
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 73
中文關鍵詞: 平滑化太陽能發電再生能源電能源管理系統
外文關鍵詞: Smoothing, Photovoltaic (PV), renewable energy sources (RES), linear programming, energy management system
相關次數: 點閱:134下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年全球環保意識抬頭,各國政策均大力扶植綠色能源,可再生發電資源正快速的增加且併入電網。隨著太陽光電逐漸普及,天氣因素造成發電的不確定性與波動勢必影響電網安全和穩定。許多國家已制定相關規範因應此問題,常見方法為使用儲能管理系統進行有效的協調與控制,然目前儲能系統仍成本高昂,資源規格的效益需妥善規畫評估。
    因此本文作為達到太陽能出力平滑化下提出儲能容量最佳配置方法,以線性規劃預先進行儲能充放電排程,實時調度則採用斜坡控制模型。架構整合儲能調度結果與實際太陽能輸出進行調控,除了有效降低太陽能功率之波動,同時考慮能源之收益。此外,儲能於發電期間可彈性調整其電量,以充分維持每日操作所需之空間。藉由實際一整年太陽能發電資料進行模擬,將最大化淨收益為目標求解最佳之儲能規格,結果呈現所提方法與其他方法相比,在較少的儲能需求下擁有更加的淨收益。

    With increasing awareness of global environmental protection, many countries have adopted renewable energy (RE) policies, and a large amount of RE has been injected into the power grid. With the gradual popularization of Photovoltaic (PV) energy, the random fluctuation of PV power has become a serious problem affecting the power quality and stability of the power grid. Some countries have formulated relevant specifications. To solve this problem, a common method is to use the effective coordination and integration of energy storage management systems. Because the current energy storage system (ESS) is still expensive, this study proposes a smooth control measurement strategy and a planning method for matching the ESS capacity.
    This study used the predicted PV power data to use linear programming to schedule the charging and discharging of the ESS in advance. Ramp control model is used in the actual control according to the current PV power fluctuations, and the ESS scheduling and ramp control results are integrated to achieve smoothing of solar power. PV power smoothing and good PV power income can be achieved simultaneously, and the ESS can adjust its power during power generation to maintain good daily operation. One-year data of the actual field PV energy were used for the simulation, and the optimal solution of the ESS was carried out for the highest net income. The results show that the proposed method requires the least installed ESS and has the best net income compared to the other methods.

    摘要 I Abstract II 誌謝 IV Contents V List of Figures VIII List of Tables XI Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Review of Literature 3 1.3 Research Objective and Contributions 7 1.4 Organization of the Thesis 8 Chapter 2 PV Power Smoothing 9 2.1 Introduction 9 2.2 Overall System Framework 9 2.3 Existing PV Smoothing Methods 12 2.4 Capacity Planning Methods 14 2.5 Feed-In Tariff of PV Generation and Penalty Price Assumption 15 2.6 Types and Characteristics of Energy Storage Systems 16 Chapter 3 Proposed smoothing strategy and ESS planning method 17 3.1 Introduction 17 3.2 The proposed Smoothing Control Method 17 3.2.1 Control Strategy Description 17 3.2.2 System Modeling 19 3.3 Energy Storage Capacity Planning Methods 29 3.3.1 Planning Structure and Process 29 3.3.2 System Planning Model 32 Chapter 4 Simulation Results 41 4.1 Introduction 41 4.2 Simulation System Parameters 41 4.2.1 PV System Parameters 41 4.2.2 ESS Parameters 42 4.2.3 System Cost Parameters 44 4.3 Simulation Results and Discussions 44 4.3.1 Case 1 Proposed Control Method Results 45 4.3.2 Case 2 Control Method Comparison 49 4.3.3 Case 3 Planning Result Comparison 59 4.4 System parameter sensitivity analysis 63 4.4.1 The impact of penalty and storage capacity on income 63 4.4.2 The impact of C-Rate and energy storage capacity on income 64 4.4.3 The relationship between APC and penalty with capacity 65 4.4.4 Comparison of effects on degradation cost with different control methods 66 Chapter 5 Conclusion and Future Prospects 67 5.1 Conclusion 67 5.2 Future Prospects 68 References 69

    [1] 經濟部能源局,再生能源統計資料,[Online]. Available: https://www.re.org.tw/information/statistics_more.aspx?id=4479 [Accessed 28 Apr. 2022].
    [2] S. K. Solanki, “Solar variability and climate change: is there a link?,” Astronomy & Geophysics, vol. 43, no. 5, pp. 5.9–5.13, Oct. 2002.
    [3] K. W. Kow, Y. W. Wong, R. K. Rajkumar, and R. K. Rajkumar, “A review on performance of artificial intelligence and conventional method in mitigating PV grid-tied related power quality events,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 334-346, Apr. 2016.
    [4] M. Faisal, M. A. Hannan, P. J. Ker, A. Hussain, M. B. Mansor, and F. Blaabjerg, “Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges,” IEEE Access, vol. 6, pp. 35143-35164, May 2018.
    [5] A. Woyte, V. Van Thong, R. Belmans and J. Nijs, “Voltage fluctuations on distribution level introduced by photovoltaic systems,” IEEE Transactions on Energy Conversion, vol. 21, no. 1, pp. 202-209, Mar. 2006.
    [6] X. Liang, “Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources,” IEEE Transactions on Industry Applications, vol. 53, no. 2, pp. 855-866, Mar.-Apr. 2017.
    [7] A. C. Tobar, E. B. Massague, M. A. Penalba, and O. G. Bellmunt, “Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system,” Renewable and Sustainable Energy Reviews, vol. 62, pp. 971-987, Sep. 2016.
    [8] X. Li, D. Hui, and X. Lai, “Battery Energy Storage Station (BESS)-Based Smoothing Control of Photovoltaic (PV) and Wind Power Generation Fluctuations,” IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 464-473, Apr. 2013.
    [9] I. D. L. Parra, J. Marcos, M. García, and L. Marroyo, “Control strategies to use the minimum energy storage requirement for PV power ramp-rate control,” Solar Energy, vol. 111, pp. 332-343, Jan. 2015.
    [10] V. T. Tran, M. R. Islam, D. Sutanto, and K. M. Muttaqi, “Mitigation of Solar PV Intermittency Using Ramp-Rate Control of Energy Buffer Unit,” IEEE Transactions on Energy Conversion, vol. 34, no. 1, pp. 435-445, Mar. 2019.
    [11] J. Marcos, I. D. L. Parra, M. García, and L. Marroyo, “Control Strategies to Smooth Short-Term Power Fluctuations in Large Photovoltaic Plants Using Battery Storage Systems,” Energies, vol. 7, no. 10, pp. 6593–6619, Oct. 2014.
    [12] M. Lei, Z. Yang, Y. Wang, H. Xu, L. Meng, J. Vasquez, et al. , “A MPC Based ESS Control Method for PV Power Smoothing Applications,” IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2136-2144, Mar. 2018.
    [13] R. Kini, D. Raker, T. Stuart, R. Ellingson, M. Heben, and R. Khanna, “Mitigation of PV Variability Using Adaptive Moving Average Control,” IEEE Transactions on Sustainable Energy, vol. 11, no. 4, pp. 2252-2262, Oct. 2020.
    [14] P. Chanhom, S. Sirisukprasert, and N. Hatti, “A new mitigation strategy for photovoltaic power fluctuation using the hierarchical simple moving average,” 2013 IEEE International Workshop on Inteligent Energy Systems (IWIES), pp. 28-33, 2013.
    [15] M. A. Syed and M. Khalid, “Moving Regression Filtering With Battery State of Charge Feedback Control for Solar PV Firming and Ramp Rate Curtailment,” IEEE Access, vol. 9, pp. 13198-13211, Jan. 2021.
    [16] L. Chen, J. Wang, Z. Sun, T. Huang, and F. Wu, “Smoothing Photovoltaic Power Fluctuations for Cascade Hydro-PV-Pumped Storage Generation System Based on a Fuzzy CEEMDAN,” IEEE Access, vol. 7, pp. 172718-172727, Dec. 2019.
    [17] R. Tonkoski, L. A. C. Lopes, and T. H. M. El-Fouly, “Coordinated Active Power Curtailment of Grid Connected PV Inverters for Overvoltage Prevention,” IEEE Transactions on Sustainable Energy, vol. 2, no. 2, pp. 139-147, Apr. 2011.
    [18] R. Bolgaryn, Z. Wang, A. Scheidler, and M. Braun, “Active Power Curtailment in Power System Planning,” IEEE Open Access Journal of Power and Energy, vol. 8, pp. 399-408, Oct. 2021.
    [19] W. Ma, “Optimal Allocation of Hybrid Energy Storage Systems for Smoothing Photovoltaic Power Fluctuations Considering the Active Power Curtailment of Photovoltaic,” IEEE Access, vol. 7, pp. 74787-74799, 2019.
    [20] D. Zhang, “Control strategy and optimal configuration of energy storage system for smoothing short-term fluctuation of PV power,” Sustainable Energy Technologies and Assessments, vol. 45, Jun. 2021.
    [21] B. Xu, A. Oudalov, A. Ulbig, G. Andersson, and D. S. Kirschen, “Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1131-1140, Mar. 2018.
    [22] Y. -R. Lee, H. -J. Kang and M. -K. Kim, “Optimal Operation Approach With Combined BESS Sizing and PV Generation in Microgrid,” IEEE Access, vol. 10, pp. 27453-27466, 2022.
    [23] Y. Liu, C. Hu, M. Miao, and F. Peng, “Different Terms Fluctuations of Solar Power System, ” Jan. 2017, [Online]. Available: https://www.atlantis-press.com/proceedings/icmmita-16/25868283 [Accessed 28 Apr. 2022].
    [24] National Renewable Energy Laboratory (NREL), “Review of PREPA Technical Requirements for Interconnecting Wind and Solar Generation,” Nov. 2013, [Online]. Available: http://www.nrel.gov/docs/fy14osti/57089.pdf [Accessed 28 Mar. 2022].
    [25] Mexican States - Department of Energy, “Technical Requirements for Interconnection of Solar Photovoltaic Plants to the National Electrical System,” 2014, [Online]. Available: https://docplayer.es/27864021-Anexo-3-requerimientos-tecnicos-para-interconexion-de-centrales-solares-fotovoltaicas-al-sistema-electrico-nacional.html [Accessed 28 Mar. 2022].
    [26] National Renewable Energy Laboratory (NREL), “Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants,” Aug. 2017, [Online]. Available: https://www.nrel.gov/docs/fy17osti/68737.pdf [Accessed 5 May 2022].
    [27] S. S. Kim, W. Lee, B. G. Bhang, J. H. Choi, S. H. Lee, S. C. Woo, et al., “Return of Interest Planning for Photovoltaics Connected with Energy Storage System by Considering Maximum Power Demand,” Applied Sciences, vol. 10, no. 3, pp. 786, 2020.
    [28] M. R. Palacín, “Understanding ageing in li-ion batteries: A chemical issue,” The Royal Society of Chemistry, vol. 47, pp. 4924-4933, 2018.
    [29] A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, and D. Riu, “A review on lithium-ion battery ageing mechanisms and estimations for automotive applications,” J. Power Sources, vol. 241, pp. 680-689, Nov. 2013.
    [30] 經濟部能源局,111年度再生能源電能躉購費率正式公告,[Online]. Available: https://www.moeaboe.gov.tw/ECW/populace/news/News.aspx?kind=1&menu_id=41&news_id=25019 [Accessed 11 Apr. 2022].
    [31] KTH School of Industrial Engineering and Management Energy Technology, “Energy Storage Technology Comparison,” 2016, [Online]. Available: https://www.diva-portal.org/smash/get/diva2:953046/FULLTEXT01.pdf [Accessed 1 May 2022].
    [32] Asian Development Bank, “Handbook on Battery Energy Storage System,” Dec. 2018, [Online]. Available: https://www.adb.org/sites/default/files/publication/479891/handbook-battery-energy-storage-system.pdf [Accessed 1 May 2022].
    [33] S. F. Schuster, T. Bach, E. Fledar, J. Muller, M. Brand, G. Sextl, and A. Jossen, “Nonlinear Aging Characteristics of Lithium-Ion Cells under Different Operational Conditions,” Journal of Energy Storage, vol. 1, pp. 44-53, Jun. 2015.
    [34] S. Downing and D. Socie, “Simple rainow counting algorithms,” International Journal of Fatigue, vol. 4, no. 1, pp. 31-40, Jan. 1982.
    [35] A. Maheshwari, N. G. Paterakis, M. Santarelli, and M. Gibescu, “Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model,” Applied Energy, vol. 261, Mar. 2020.
    M. A. Hayat, F. Shahnia, and G. Shafiullah, “Replacing Flat Rate Feed-In Tariffs for Rooftop Photovoltaic Systems With a Dynamic One to Consider Technical, Environmental, Social, and Geographical Factors,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 3831-3844, Jul. 2019.

    下載圖示 校內:2024-08-03公開
    校外:2024-08-03公開
    QR CODE