| 研究生: |
盧建余 Lu, Chien-Yu |
|---|---|
| 論文名稱: |
使用線性矩陣不等式法探討時延系統的強健控制 Robust Control of Time-Delay Systems: A Linear Matrix Inequality Approach |
| 指導教授: |
蔡聖鴻
Tsai, S. H. Jason |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 線性矩陣不等式 、穩定度 、時延系統 、濾波器 、控制器 |
| 外文關鍵詞: | stability, controller, filtering, time-delay systems, linear matrix inequality |
| 相關次數: | 點閱:96 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在使用線性矩陣不等式法探討強健時延系統控制。其研究主題包括針對一系列不確定性時延系統、二維離散狀態延遲蘿莎模式、隨機時延系統及中性型隨機時延系統探討其穩定性、控制器設計、濾波器設計及追蹤控制設計。在穩定性分析方面,藉由狀態轉移矩陣法,我們提出創新的穩定法則。根據Lyapunov-Krasovskii 法及結合線性矩陣不等式法,可推得簡單且改善時延相關的穩定法則。濾波器設計方面,提出一種新的濾波器設計方法,使得時延系統達到穩定且同時能滿足狀 的強健性能指標。追蹤控制方面,針對時延系統,藉由線性矩陣不等式法設計一種強健追蹤器以保証閉迴路的追蹤能滿足 的性能指標。至於二維離散狀態延遲系統方面,則提出一種強健的二維動態控制器,使得閉迴路穩定同時滿足 的性能指標。在隨機時延系統控制方面,以線性矩陣不等式推衍而得到的時延相關控制器亦被設計出,最後本論文亦提出中性型隨機線性與非線性系統的強健穩定化控制器。
A complete study of the robust control of time-delay systems via the linear matrix inequality approach is presented in this dissertation. This includes the developments of the stability analysis/controller design/filtering problem/tracking control for a series of uncertain systems with time delay, two-dimensional (2-D) discrete state-delayed systems described by Roesser model, a class of stochastic systems with time delay and a class of neutral stochastic systems. A novel state transformation matrix has been proposed for the stability analysis. Based on the Lyapunov-Krasovskii functionals combining with linear matrix inequality (LMI) techniques, simple and improved delay-dependent robust stability criteria are derived. For the filtering design, asymptotically stabilizing Kalman filtering and filtering approaches are presented for the system with time delay. For the robust tracking control, the proposed tracker obtained in terms of LMIs guarantees the stability of closed-loop systems and makes the output to approach the command reference input with a specified performance. For the two-dimensional discrete state-delayed system, a 2-D dynamic output feedback controller is designed to achieve the closed-loop system asymptotic stability and a specified performance using the LMI approach. Also, we develop a 2-D filtering approach with a specified performance measure. For the stochastic system with time delay, a state feedback controller is designed to guarantee the closed-loop system remaining stable for all admissible uncertainties. Finally, we propose a state feedback controller to stabilize the class of neutral stochastic nonlinear systems with a specified performance.
[1] Beck, C. B., J. C. Doyle and K. Glover, “Model reduction of multidimensional and uncertain systems,” IEEE Transactions on Automatic Control, vol. 41, pp.1466-1477, 1996.
[2] Bisiacco, M.,“State and output feedback stabilizability of 2-D systems,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 32, pp. 1246-1255, 1985.
[3] Bolzern, P., P. Colaneri and G. Nicolao, “Optimal robust filtering with time-varying parameter uncertainty,” International Journal of Control, vol.63, pp. 557-576, 1996.
[4] Boukas, E. K. and Z. K. Liu: Deterministic and Stochastic Time Delay Systems, Birkhauser, Boston, 2002.
[5] Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan : Linear Matrix Inequalities in System and Control Theory , SIAM, Philadelphia, 1994.
[6] Cao, J.,“Global stability analysis in delayed cellular neural networks,” Physical Review E, vol. 59, pp. 5940-5944, 1999.
[7] Cao, Y. Y., Y. X. Sun and C. Cheng, “Delay-dependent robust stabilization of uncertain systems with multiple state delays,” IEEE Transactions on Automatic Control, vol. 43, pp. 1608-1612, 1998.
[8] Chen, C. W., J. S. H. Tsai, and L. S. Shieh, “Modeling and solution of two-dimensional input time-delay system,” Journal of Franklin Institute, vol. 339, pp. 569-578, 2002.
[9] Chen, G. and X. Yu, “On time-delayed feedback control of chaotic systems,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 46, pp. 767-772, 1999.
[10] Chen, S. F. and I. K. Fong, “An LMI approach to the stabilization of 2-D discrete state-delayed systems,”2003 Automatic Control Conference, R. O. C., pp.325-329, 2003.
[11] Chyung, D. H.,“Tracking controller for linear time delay systems,” Proceeding of the 27th Conference on Decision and Control, Austin, Texas, pp. 2472-2473, December, 1988.
[12] De Souza, C. E., R. M. Palhares and P. L. D. Peres,“Robust filter design for uncertain linear systems with multiple time-varying state delays,”IEEE Transactions on Signal Processing, vol. 49, pp. 569-576, 2001.
[13] Du, C., L. Xie, and C. Zhang, “ control and robust stabilization of two-dimensional systems in Roesser models,” Automatica, vol. 37, pp. 205-211, 2001.
[14] Gahinet, P., A. Nemirovski, A. J. Laub and M. Chilai : LMI Control Toolbox. The Math Works, Inc., Boston, 1995.
[15] Gallegos, J. A., “Disturbance rejection of time-delay systems,” International Journal of Systems Science, vol. 25, pp. 1081-1091, 1994.
[16] Garcia, G., J. Bernussou and D. Arzelier,“Robust stabilization of discrete-time linear systems with norm-bound time-varying uncertainty,” Systems Control Letters, vol. 22, pp. 327-339, 1994.
[17] Gorecki, H., S. Fuksa, P. Grabowski and A. Korytowski : Analysis and Synthesis of Time Delay Systems, John Wiley and Sons, Warszawa, 1989.
[18] Gu, K., “A generalized discretization scheme of Lyapunov functional in the stability problem of linear uncertain time-delay systems,” International Journal of Robust and Nonlinear Control, vol. 9, pp.1-14, 1999.
[19] Guojun, J. and S. Wenzhong,“Stability of bilinear time-delay systems,” IMA Journal of Mathematical Control and Information, vol. 18, pp. 55-60, 2001.
[20] Haussman, U.G.,“Asymptotic stability of the linear It equation in infinite dimensions,” Journal of Mathematic Annual Applications, vol. 65, pp. 219-235, 1978.
[21] Hmamed, A., A. Benzaouia and H. Bensalah, “Regulator problem for linear continuous-time delay systems with nonsymmetrical constrained control,” IEEE Transactions on Automatic Control, vol. 40, pp. 1615-1619, 1995.
[22] Hsiao, F. H. and S. T. Pan, “Robust Kalman filter synthesis for uncertain multiple time-delay stochastic systems,” Journal of Dynamic Systems, Measurement and Control, vol. 118, pp. 803-808, 1996.
[23] Hsiao, F. H., S. T. Pan and C. C. Teng, “Robust controller design for uncertain multiple time-delay systems,” Transactions of ASME Journal of Dynamic Systems, Measurement and Control, vol. 119, pp. 122-127, 1997.
[24] Huang, Y. P. and K. Zhou, “Robust stability of uncertain time-delay systems,” IEEE Transactions on Automatic Control, vol.45, pp.2169-2173, 2000.
[25] Jiang, X., S. Fei and C. B. Feng, “Comments on “Bounded real criteria for linear time-delay systems,” IEEE Transactions on Automatic Control, vol. 45, pp. 1409-1410, 2000.
[26] Jong, G. J., T. J. Su, C. Y. Lu and J. S. H. Tsai,“Delay-dependent robust filtering for time-delay interval system,” IEEE International Conference on System, Man and Cybernetics, Washington, D. C., U. S. A., pp. 3159-3163, 2003.
[27] Kaczorek T., Two-dimensional linear systems, Springer, Berlin, 1985.
[28] Kharitonov, V. L., “Robust stability analysis of time-delay systems- a survey,” Annual Reviews in Control, vol. 23, pp. 185-196, 1999.
[29] Kharitonov, V. L. and A. P. Zhabko, “Robust stability of time-delay systems,” IEEE Transactions on Automatic Control, vol. 39, pp.2388-2397, 1994.
[30] Khasminskii, R. Z. Stochastic Stability of Differential Equations, Sijthoffand Noordhoff, Alphen aan den Rijn, 1980.
[31] Kolmanovskii, V. B. and A. Myshkis.: Introduction to the Theory and Applications of Functional Differential Equations, Dordrecht, Kluwer Academic Publishers, 1999.
[32] Kolmanovskii, V. B. and V. R. Nosov: Stability of Functional Differential Equations, Academic press, New York, 1986.
[33] Kreindler, E. and A. Jameson, “Conditions for nonegativeness of partionedmatrices,” IEEE Transactions on Automatic Control, vol. 17, pp. 147-148, 1972.
[34] Landau, Y. D., Adaptive Control: The Model Reference Approach. Marcel Dekker, New York, 1979.
[35] Lee, B. and J. G. Lee, “Delay-dependent stability criteria for discrete-time delay systems,” Proceedings of the American Control Conference, pp. 319-320, 1999.
[36] Lee, J. H., S. W. Kim and W. H. Kwon, “Memoryless controllers for state delayed systems,” IEEE Transactions on Automatic Control, vol. 39, pp. 159-162, 1994.
[37] Liao, T. L. and F. C. Wang, “Global stability condition for cellular neural networks with time delay,” 2000 Automatic Control Conference R. O. C., pp.493-497, 2000.
[38] Liao, X. X. and X. Mao, “Exponential stability of stochastic delay interval systems,” Systems and Control Letters, vol. 40, pp. 171-181, 2000.
[39] Lieh, C. H. and J. G. Hsieh, “New results on global exponential stability of interval time-delay systems”JSME International Journal Series C., vol. 43, pp. 306-320, 2000.
[40] Lien C. H., “Asymptotic criterion for neutral systems with multiple time delays,” Electronics Letters, vol. 35, 850-851,1999.
[41] Li, X. and C.E. de Souza, “Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach,” IEEE Transactions on Automatic Control, vol. 42, pp. 1144-1148, 1997.
[42] Lisong Y., “Robust analysis and synthesis of linear time-delay systems with norm-bounded time-varying uncertainty,” Systems and Control Letters, vol. 42, pp. 281-289, 1996.
[43] Liu, P. L. and T. J. Su, “Robust stability of interval time-delay systems with delay-dependence,” Systems and Control Letters, vol. 33, pp. 213-239, 1998.
[44] Lu, C. Y., J. S. H. Tsai and T. J. Su,“On improved delay-dependent robust stability criteria for uncertain systems with multiple-state delays,”IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 49, pp. 253-256, 2002.
[45] Lu, C. Y., J. S. H. Tsai, G, J, Jong and T. J. Su, “An LMI-based approach for robust stabilization of uncertain stochastic systems with time-varying delays,” IEEE Transactions on Automatic Control, vol. 48, pp.286-289, 2003.
[46] Luo, M, M. de La Sen and J. Rodellar, “Robust stabilization of a class of uncertain time-delay systems in sliding mode,” International Journal of Robust and Nonlinear Control, vol. 7, pp. 59-74, 1997.
[47] Mahmoud, M. S.: Robust Control and Filtering for Time-Delay Systems, Marcel Dekker, New York, 2000.
[48] Mahmoud, M. S. and L. Xia, “Stability and positive realness of time-delay systems,” Journal of Mathematics Analysis and Applications, vol. 239, pp.7-19, 1999.
[49] Mahmoud, M. S., “Robust control of linear neutral systems,”Automatica, vol. 36, pp. 757-764, 2000.
[50] Mahmoud, M. S., N. F. Al-Muthairi and S. Bingulac, “Robust Kalman filtering for continuous time-lag systems,” Systems and Control Letters, vol. 38, pp. 309-319, 1999.
[51] Malek-Zavarei, M. and Jamshidi, M.: Time-Delay Systems, Analysis, Optimization and Application, North-Holland Systems and Control Series, 1987.
[52] Mao, X.,“Stochastic-asymptotic properties of neutral stochastic differential delay equations,” Stochastic Stochastic Reporst, vol. 68, pp. 273-295, 2000.
[53] Mao, X.: Stochastic Differential Equations and Their Applications, Horwood Publishing Limited, 1997.
[54] Mao, X., N. Koroleva and A.Rodkina “Robust stability of uncertain stochastic differential delay equations,” Systems and Control Letters, vol. 35, pp. 325-336, 1998.
[55] Mao, X. and C. Selfridg, “Stability of stochastic interval systems with time delays,” Systems and Control Letters, vol. 42, 279-290, 2001.
[56] Nagpal, K. M. and P. P. Khargonekar, “Filtering and smoothing in an setting,” IEEE Transactions on Automatic Control, vol. 36, pp. 152-166, 1991.
[57] Niculescu, S.-I.: Delay Effects on Stability, Springer-Verlag, London, 2001.
[58] Niculescu, S. –I., “ memoryless control with an -stability constraint for time-delay systems: an LMI approach,” IEEE Transactions on Automatic Control, vol. 43, pp. 739-743, 1998.
[59] Niculescu,S.-I., E. I. Verriest, L. Dugard and J. M. Dugard, “Stability of linear systems with delayed state,” a guide tour in Stability and Control of Time-Delay Systems, L. Dugard and E. I. Verriest, Eds, Lecture Notes in Control and Information Sciences, vol. 228, pp. 1-71, Springer-Verlag, London, 1997.
[60] Niculescu, S. –I., J. M. Dion and L. Dugard, “Robust stabilization for uncertain time-delay systems containing saturating actuators,” IEEE Transactions on Automatic Control, vol. 41, pp. 742-747, 1996.
[61] Ramos, J. L. and A. E. Pearson, “Output feedback stabilizing controller for time-delay systems,” Automatica, vol. 36, pp. 613-617, 2000.
[62] Razimukhin, B. S., “Application of Lyapunov method to problems in stability of systems with delay,” Automatica i Telemechanica, vol. 21, pp. 740-749, 1960.
[63] Roesser, R. P., “A discrete state-space model for linear image processing,” IEEE Transactions on Automatic Control, vol. 20, pp. 1-10, 1975.
[64] Roska, T., C. W. Wu, M. Balsi and L. O. Chua, “Stability of cellular neural networks with dominant nonlinear and delay-type templates,” IEEE Transactions. On Circuits and Systems-I: Fundamental Theory and Applications, vol. 40, pp.270-272, 1993.
[65] Roska, T. and L. O. Chua, “Cellular neural networks with nonlinear and delay-type template,” International Journal of Circuit Theory and Applications, vol. 20, pp. 469-481, 1992.
[66] Schmitendorf, W. E. and B. R. Barmish, “Robust asymptotic tracking for linear systems with unknown parameters,” Automatica, vol. 22, No. 3, pp. 355-360, 1986.
[67] ebek, M.,“ problem of 2-D systems,” European Control Conference, pp. 1476-1479, 1993.
[68] Shaked, U., I. Yaesh and C. E. de Souza, “Bounded real criteria for linear time-delay systems,” IEEE Transactions on Automatic Control, vol. 43, pp. 1016-1022, 1998.
[69] Shi, P. and R. K. Agarwal, “Robust disturbance attenuation of fluid dynamics systems with norm-bounded uncertainties,” IMA Journal of Mathematics Control and Information, vol. 18, pp. 73-82, 2001.
[70] Shieh, N. C., K. Z. Liang and C. J. Mao, “Robust output tracking control of an uncertain linear system via a modified optimal linear-quadratic method,” Journal of Optimization Theory and Applications, vol. 117, pp. 649-659, 2003.
[71] Shyu, K. K. and Y. C. Chien, “Robust tracking and model following for uncertain time-delay systems,” International Journal of Systems Science, vol. 62, pp. 589-600, 1995.
[72] Su, J. H., “Further results on the robust stability of linear systems with a single time delay,” Systems and Control Letters, vol. 23, pp. 375-379, 1994.
[73] Su, T. J. and C. G. Huang, “Robust stability of delay-dependence for linear uncertain systems,” IEEE Transactions on Automatic Control, vol.37, pp. 1656-1659, 1992.
[74] Su, T. J., C. Y. Lu and J. S. H. Tsai, “LMI approach to delay-dependent robust stability for uncertain time-delay systems,” IEE Proceedings D, Control Theory and Applications, vol. 148, pp. 209-212, 2001.
[75] Su, T. J., T. S. Kuo and Y. Y. Sun, “Robust stability for linear time-delay systems with linear parameter perturbation,” International Journal of Systems and Sciences, vol. 119, pp. 2123-2129, 1988.
[76] Trinh, H., “An observer design procedure for time-delay systems,” Control and Intelligent Systems, vol. 27, pp.6-10, 1999.
[77] Trinh, H., “Linear functional state observer for time delay systems,” International Journal of Control, vol. 72, pp. 1642-1658, 1999.
[78] Trinh, H. and M. Aldeen, “Output tracking for linear uncertain time-delay systems,” IEE Proceedings D, Control Theory and Applications, vol. 143, 481-488, 1996.
[79] Trinh, H. and T. Fernando, “Some new stability conditions for two-dimensional difference systems,” International Journal of Systems and Sciences, vol, 31, pp. 203-211, 2000.
[80] Tsai, J. S. H., C. Y. Lu and T. J. Su, “Robust Kalman filtering for delay-dependent interval systems,” International Journal of General Systems, 2004 (accepted galley proof).
[81] Tsai, J. S. H., C. Y. Lu and T. J. Su, “Robust tracking for uncertain time-delay discrete systems,” 2004 Automatiic Control Conference, R. O. C., 2004.
[82] Tsai, J. S. H., C. Y. Lu and T. J. Su, “Robust stabilization of uncertain stochastic neutral interval system with multiple delays, ” 2003 Automatic Control Conference, R. O. C., pp. 969-973, 2003.
[83] Tsai, J. S. H., C. Y. Lu and T. J. Su, “Robust control for uncertain nonlinear stochastic neutral systems with state delays,” IEEE International Conference on System, Man and Cybernetics, Washington, D. C., U. S. A., pp. 3164-3169, 2003.
[84] Tsai, J. S. H., C. Y. Lu and T. J. Su, “Robust stabilization of uncertain discrete time systems with state delay, ” 2002 American Control Conference, Anchorage, Alaska, U. S. A., pp. 2404-2405, 2002.
[85] Tuan, H. D., P. Apkarian, T. Q. Nguyen, and T. Narikiyo, “Robust mixed / filtering of 2-D systems,”IEEE Transactios on Signal Processing, vol. 50, pp. 1759-1771, 2002.
[86] Uahchinkul, K., J. Ngamwiwit and S. Phoojaruenchanachai, “Robust stabilization of uncertain delayed systems: Application to model-following systems,” SICE 2000, pp. 129-134, 2000.
[87] Wang, Z., B. Huang and H. Unbehauen, “Robust observer design of linear time-delay systems with parametric uncertainty,” Systems and Control Letters, vol. 42, pp. 303-312, 2001
[88] Wang, Z. and K. J. Burnham, “Robust filtering for a class of stochastic uncertain nonlinear time-delay systems via exponential state estimation,” IEEE Transactions on Signal Processing, vol. 49, pp. 794-804, 2001.
[89] Woods, J. W. and V. K. Ingle, “Kalman filtering in two dimensions: further results,” IEEE Transactions on Acoustic, Speech, Signal Processing, vol. 29, pp. 188-197, 1981.
[90] Xie, L. and Y. Y. Soh, “ Robust Kalman filtering for uncertain systems,” Systems and Control Letters, pp. 123-129, 1994.
[91] Xu, B. and J. Lam, “Decentralized stabilization of large scale interconnected time-delay systems,” Journal of Optimization Theory and Applications, vol. 103, pp. 231-240, 1999.
[92] Xu, S., James Lam and C. Yang, “Quadratic stability and stabilization of uncertain linear discrete-time systems with state delay,” Systems and Control Letters, vol. 43, pp. 77-84, 2001.
[93] Xu, Shenyuan, P. V. Dooren, “Robust filtering for a class of non-linear systems with state delay and parameter uncertainty,” International Journal of control, vol. 75, pp. 766-774, 2002.
[94] Xue, X and D. Qiu, “Robust compensation design for time-delay systems with norm-bounded time-varying uncertainties,” IEEE Transactions on Automatic Control, vol. 45, pp. 606-609, 2000.
[95] Yan, J. J, J. S. H. Tsai and F. C. Kung, “Robust stability analysis of interval systems with multiple time-varying delays: Evolutionary programming approach” Journal of Franklin Institut, vol. 336, pp. 711-720, 1999.
[96] Yao, Y. X., Y. M. Zhang and R. Kovacevic, “Functional observer and state feedback for input time-delay systems,” International Journal of Control, vol. 66, pp. 603-617, 1997.
[97] Yao, Y. X., Y. M. Zhang and R. Kovacevic, “Parameterization of observers for time-delay systems and its application in observer design,” IEE Proceedings D, Control Theory and Applications, vol. 143, pp. 225-232, 1996.
[98] Yu, G. J., C. Y. Lu, J. S. H. Tsai, T. J. Su and B. D. Liu, “Stability of cellular neural networks with time-varying delay,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 50, 677-679, 2003.
[99] Yu, L., J. Chu and H. Su, “Robust memoryless controller design for linear time-delay systems norm-bounded time-varying uncertainty,” Automatica, vol. 32, pp. 1759-1762, 1996.
[100] Zhang, Q., R. Ma and J. Xu, “Stability of cellular neural networks with delay,” Electronics Letters, vol. 37, pp. 575-576, 2001.