簡易檢索 / 詳目顯示

研究生: 許祐川
Hsu, Yu-Chuan
論文名稱: 製備磁性奈米粒子並應用於藥物的投遞與酵素的固定化
Preparation of Magnetic Nanoparticles as Drug or Enzyme Carrier
指導教授: 蕭世裕
Shaw, Shyh-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 125
中文關鍵詞: 磁性奈米粒子輸送載體
外文關鍵詞: Magnetic Nanoparticles, Carrier
相關次數: 點閱:173下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文的研究方向主要是著重於磁性奈米載體在藥物投遞與酵素固定化方面的應用。我們利用Fe3+和Fe2+共沉澱並且以3-丙氨三乙氧基矽烷和戊二醛進行表面修飾後成功的製備出Fe3O4(I)、Fe3O4(AI)、Fe3O4(II)、Fe3O4(AII)、Fe3O4(Ald-I)與Fe3O4(Ald-II)等六種不同形式的磁性奈米載體,並順利的以離子吸附或共價鍵結的方式來乘載Doxorubicin (簡稱DOX )抗腫瘤藥物與固定胃蛋白酶,因而製備出DOX(I)、DOX(AI)、DOX(II)、DOX(AII)-磁性標靶藥物與Pepsin(Ald-I)-磁性奈米粒子。

      由TEM的結果可以得知我們所製備出來的磁性載體的平均粒徑約為8.5 nm與10.6 nm。由XRD、FT-IR與EDS的光譜數據可以得知所有的修飾反應與固定化反應皆發生在各種磁性載體的表面,並不會影響其內部的尖晶石構型。由SQUID的磁性數據可知各種磁性載體在進行修飾反應與固定化反應的前後皆呈現出超順磁性的特性。

      在藥物投遞的部分,由MTT試驗可知磁性奈米粒子本身並不具有毒性,一旦表面以離子吸附的方式接上DOX藥劑而形成DOX-磁性標靶藥物後即對老鼠的膀胱腫瘤細胞(MBT-2)有抑制的效果。由磁性標的試驗的結果可知,我們順利的利用磁性奈米粒子本身的超順磁性並藉由外加磁場將DOX-磁性標靶藥物直接引導到特定的腫瘤細胞部位毒殺細胞。經由計算最大固定化效率可知當DOX與Fe3O4(I)-磁性奈米粒子的重量比為0.356時,平均一顆Fe3O4(I)-磁性奈米粒子可吸附615個DOX分子;當DOX與Fe3O4(II)-磁性奈米粒子的重量比為0.353時,平均一顆Fe3O4(II)-磁性奈米粒子可吸附1215個DOX分子。

      在酵素固定化方面,由活性試驗可知當胃蛋白酶以共價鍵結的方式被固定到Fe3O4(Ald-I)-磁性奈米粒子後仍保有胃蛋白酶原來64 %的活性。由於磁性奈米粒子本身具有超順磁性的特性,所以可以利用外加磁場的方式將以被固定化的胃蛋白酶從反應混合物中分離出來,並且可以重複使用達六次以上。

      The goal of this research is to prepare magnetic nanoparticles with different surface charge or functional groups as drug or enzyme carriers. Six different magnetic nanoparticles were prepared by coprecipitation of Fe2+ and Fe3+ ions in ammonia and sodium hydroxide solution, respectively, to yield magnetic nanoparticles with different surface charge Fe3O4(I) and Fe3O4(II). They were derivatized with 3-aminopropyl-triethoxysilane (APES) to yield nanoparticles Fe3O4(AI) and Fe3O4(AII), and then further derivatized with glutaldehyde to yield nanoparticles Fe3O4(Ald-I) and Fe3O4(Ald-II). The nanoparticles possess superparamagnetic characteristics and with particle sizes between 8.5 and 10.6 nm as determined by SQUID and TEM, respectively. Modification of the particles occurred on the surface of the particles and it didn’t affect their crystal structures as determined by XRD, FT-IR and EDS.

      Doxorubicin, an anticancer drug, was absorbed on to the surface of Fe3O4(I), Fe3O4(II), Fe3O4(AI) and Fe3O4(AII) with maximum absorption at 615, 1215, 417 and 402 molecules per particle, respectively. The absorbed doxorubicin was not be able to be eluted from the particles by increasing ionic strength up to 0.30 M of NaCl but it was completely eluted by lowering the pH of solution. The spuperparamagnetic nature of the particles and the reversible binding between doxorubicin and the particles has allowed it to become a novel targeting and control-released system for doxorubicin. In vitro test of the killing effect of the DOX-absorbed magnetic nanoparticles on rat bladder tumor cell (MBT-2) reveals that the particles can be targeted by an external magnet and release doxorubicin on site to kill the tumor cells.

      To examine the potential of using magnetic particles as enzyme carrier, pepsin was immobilized on the surface of Glutaraldehyde derivatized magnetic nanoparticles Fe3O4(Ald-I). The immobilized enzyme retains 64% of activity and can be targeted by external magnet.

    第一章 序論 ---------------------------------------------- 1 第二章 磁性標靶藥物的製備與應用 -------------------------- 6 一、研究動機 --------------------------------------------- 6 二、實驗方法 --------------------------------------------- 11 (一) 化學藥品 ------------------------------------------ 11 (二) 不同離子性表面的磁性奈米粒子的製備 ------------------ 12 1. 方法(I) 表面完全帶負電荷的磁性奈米粒子 ----------- 12 2. 方法(II) 表面同時帶有負電荷與正電荷的磁性奈米粒子 ------13 3. 方法(III) 表面完全帶正電荷的磁性奈米粒子 -------------- 14 (三) 以三種不同離子性表面的磁性奈米粒子 作為磁性載體將DOX製備成磁性標靶藥物------------------ 15 (四) 不同離子性表面的磁性奈米粒子對DOX 固定化效率分析 -------------------------------------- 16 (五) 性質鑑定 -------------------------------------------- 20 (六) 離子強度對磁性標靶藥物的影響 ------------------------ 21 (七) pH值對磁性標靶藥物的影響 --------------------------- 22 (八) 預測磁性標靶藥物區域化後的釋放效率 ------------------ 23 (九) 細胞毒性試驗 ( MTT Assay ) -------------------------- 24 三、結果與討論 ------------------------------------------- 27 (一) 磁性奈米粒子的尺寸和內部晶型結構 -------------------- 27 (二) 修飾反應後磁性奈米粒子表面成分的鑑定 ---------------- 34 (三) 固定化反應機制與被固定DOX的釋放機制 ----------------- 39 (四) 三種不同離子性表面的磁性奈米粒子 對DOX的固定化效率 ----------------------------------- 51 (五) 比較不同載體對DOX的最大固定化效率 ------------------- 58 (六) 磁性奈米粒子的磁性測定 ------------------------------ 61 (七) 離子強度對磁性標靶藥物的影響 ------------------------ 66 (八) pH值對磁性標靶藥物的影響 --------------------------- 69 (九) 磁性標靶藥物區域化後的釋放效率 ---------------------- 72 (十) 磁性標靶藥物的體外試驗( MTT Assay ) ----------------- 74 (i) MBT-2的MTT試驗 --------------------------------------- 75 (ii) DOX-磁性標靶藥物的磁性標的試驗 ---------------------- 76 四、結論 ------------------------------------------------- 87 第三章 磁性奈米粒子應用於酵素的固定化反應 ---------------- 89 一、研究動機 --------------------------------------------- 89 二、實驗方法 --------------------------------------------- 92 (一) 第一部分 化學藥品 ----------------------------------- 92 (二) 製備表面含有醛基的磁性奈米粒子 ---------------------- 93 (三) 胃蛋白酶的固定化反應 -------------------------------- 94 (四) 測定胃蛋白酶最佳的固定化反應時間 -------------------- 95 (五) 計算表面含有醛基的磁性奈米粒子對 胃蛋白酶的固定化效率 -------------------------------- 97 (六) 性質鑑定 -------------------------------------------- 98 (七) 胃蛋白酶的活性試驗 ---------------------------------- 99 (i)胃蛋白酶的活性試驗 ----------------------------------- 100 (ii)被固定化後胃蛋白酶的活性試驗 ------------------------ 100 (八) 測定已被固定化胃蛋白酶的重複使用效率 --------------- 102 三、結果與討論 ------------------------------------------ 103 (一) 第一部分 磁性奈米粒子的尺寸和內部晶型結構 ---------- 103 (二) 修飾反應後磁性奈米粒子表面成分的鑑定 --------------- 105 (三) 胃蛋白酶最佳的固定化反應時間 ----------------------- 108 (四) 表面含有醛基的磁性奈米粒子 對胃蛋白酶的固定化效率 ----------------------------- 110 (五) 磁性奈米支撐物質的磁性測定 ------------------------- 113 (六) 胃蛋白酶的活性試驗 --------------------------------- 114 (i)胃蛋白酶的活性試驗 ----------------------------------- 114 (ii)胃蛋白酶的活性試驗 ---------------------------------- 115 (七) Pepsin(Ald-I)-磁性奈米粒子重複使用效率 ------------ 116 四、結論 ------------------------------------------------ 117 第四章 總結 --------------------------------------------- 118 參考文獻 ------------------------------------------------ 120

    [1] Huczko A, Appl Phys A-Mater Sci Process 70(2000): 365
    [2] Raj K, Moskowitz B, Casciari R, J Magn Magn Mater 149 (1995) 174
    [3] Safa rõÂk I, Safa rõÂkova M , J Chromatogr B 722 (1999) 33
    [4] Safa rõÂk I, Safa rõÂkova M, Forsythe SJ, J Appl Bacteriol 78 (1995) 575
    [5] Safa rõÂkova M, Safa rõÂk I , Magn Electr Sep 10 (2001) 223
    [6] Safa rõÂk I, Safa rõÂkova M In: Hafeli U, Schutt W, Teller J, Zborowski M (eds) Scientific and Clinical Applications of Magnetic Carriers. Plenum, New York London (1997), p 323
    [7] Ivo Safarik, Mirka Safarikova, Monatshefte fur Chemie 133(2002), 737-759
    [8] Kuznetsov AA, Filippov VI, Alyautdin RN, Torshina NL, Kuznetsov OA, J Magn Magn Mater 225 (2001) 95
    [9] Lubbe AS, Bergemann C, In: Hafeli U, Schutt W, Teller J, Zborowski M (eds) Scientifc and Clinical Applications of Magnetic Carriers. Plenum, New York London (1997), p 457
    [10] Lubbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dorken B, Herrmann F, Gurtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D,
    Huhnt W, Huhn D, Cancer Res 56 (1996) 4686
    [11] Pulfer SK, Gallo JM In: Hafeli U, Schutt W, Teller J, Zborowski M (eds) Scientific and Clinical Applications of Magnetic Carriers. Plenum, New York London (1997), p 445
    [12] Viroonchatapan E, Sato H, Ueno M, Adachi I, Tazawa K, Horikoshi I, J Control Release 46 (1997) 263
    [13] Babincova M, BabinecP, Cell Mol Biol Lett 2 (1997) 3
    [14] Widder KJ, Senyei AE, Pharmacol Therapeut 20 (1983) 377
    [15] Torchilin VP, Eur J Pharm Sci 11 (2000) S81
    [16] Orekhova NM, Akchurin RS, Belyaev AA, Smirnov MD, Ragimov SE, Orekhov AN, Thromb Res 57 (1990) 611
    [17] Matsunaga T, Kamiya S, Appl Microbiol Biotechnol 26(1987): 328
    [18] Matsunaga T, Kawasaki M, Yu X, Tsujimura N, Nakamura N, Anal Chem 68 (1996) 3551
    [19] Nakamura N, Burgess JG, Yagiuda K, Kudo S, Sakaguchi T, Matsunaga T, Anal Chem 65 (1993) 2036
    [20] Nakamura N, Matsunaga T, Anal Chem Acta 281 (1993) 585
    [21] Matsunaga T, Nakayama H, Okochi M, Takeyama H, Biotechnol Bioeng 73 (2001) 400
    [22] Sode K, Kudo S, Sakaguchi T, Nakamura N, Matsunaga T, Biotechnol Tech 7 (1993) 688
    [23] Sestier C, DaSilva MF, SabolovicD, Roger J, Pons JN, Electrophoresis 19 (1998) 1220
    [24] Halbreich A, Roger J, Pons JN, da Silva MF, Hasmonay E, Roudier M, Boynard M, Sestier C, Amri A, Geldwerth D, Fertil B, Bacri JC, Sabolovic D (1997) In: Hafeli U, Schutt W, Teller J, Zborowski M (eds) Scienti®c and Clinical Applications of Magnetic Carriers. Plenum, New York London, p 399
    [25] Shinkai M, Honda H, Kobayashi T, Biocatalysis 5 (1991) 61
    [26] Shi YJ, Shen RN, Lu L, Broxmeyer HE, Blood Cells 20 (1994) 517
    [27] Tamaura Y, Takahashi K, Kodera Y, Saito Y, Inada Y, Biotechnol Lett 8 (1986) 877
    [28] Yoshimoto T, Mihama T, Takahashi K, Saito Y, Tamaura Y, Inada Y, Biochem Biophys Res Commun 145 (1987) 908
    [29] Yoshimoto T, Ohwada K, Takahashi K, Matsushima A, Saito Y, Inada Y, Biochem Biophys Res Commun 152 (1988) 739
    [30] Suzuki M, Shinkai M, Kamihira M, Kobayashi T, Biotechnol Appl Biochem 21 (1995) 335
    [31] De Cuyper M, De Meulenaer B, Van der Meeren P, Vanderdeelen J, Biocatal Biotransform 13 (1995) 77
    [32] Shinkai M, Suzuki M, Iijima S, Kobayashi T, Biotechnol Appl Biochem 21 (1995) 125
    [33] Babincova M, Pharmazie 50 (1995) 702
    [34] P.J. Halling, P. Dunnill, Enzyme Microb. Technol. 2 (1980) 2
    [35] M.Y. Arica, H. Yavuz, S. Patir, A. Denizli, J. Mol. Catal. B Enzymatic 11 (2000) 127
    [36] H. Kobayashi, T. Matsunaga, J. Colloid Interface Sci. 141 (1991)
    505
    [37] A. Kondo, H. Fukuda, J. Ferment. Bioeng. 84 (1997) 337
    [38] M. Reetz, A. Zonta, V. Vijayakrishnan, K. Schimossek, J. Mol. Catal. A Chem. 134 (1998) 251
    [39] S. Roath, J. Magn. Magn. Mater. 122 (1993) 329
    [40] S.V. Sonti, A. Bose, J. Colloid Interface Sci. 170 (1995) 575
    [41] X.D. Tong, B. Xue, Y. Sun, Biotechnol. Prog. 17 (2001) 134
    [42] T.M. Cocker, C.J. Fee, R.A. Evans, Biotechnol. Bioeng. 53 (1997) 79
    [43] W. Schütt, C. Grüttner, U. Häfeli, M. Zborowski, J. Teller, H. Putzar, C. Schümichen, Hybridoma 16 (1997) 109
    [44] F. Sauzedde, A. Elaissari, C. Pichot, Macromol. Symp. 151 (2000) 617
    [45] W. Schütt, C. Grüttner, J. Teller, F. Westphal, U. Häfeli, B. Paulke, P. Goetz, W. Finck, Artif. Organs 23 (1999) 98
    [46] S.R. Rudge, T.L. Kurtz, C.R. Vessely, L.G. Catterall, D.L. Williamson, Biomaterials 21 (2000) 1411
    [47] A.R. Varlan, J. Suls, P. Jacobs, W. Sansen, Biosens. Bioelectron. 10 (1995) 15–19.
    [48] T.N. Krogh, T. Berg, P. Højrup, Anal. Biochem. 274 (1999) 153
    [49] R.V. Mehta, R.V. Upadhyay, S.W. Charles, C.N. Ramchand, Biotechnol. Tech. 11 (1997) 493
    [50] M. Koneracká, P. Kopcanský, M. Antal´ýk, M. Timko, C.N. Ramchand, D. Lobo, R.V. Mehta, R.V. Upadhyay, J. Magn. Magn. Mater. 201 (1999) 427
    [51] F. Arcamone, Doxorubicin, Academic Press, New York, 1981.
    [52] L.J. Goldstein, H. Galski, A. Fojo, M. Willingham, S.L. Lai, A. Gazdar, R. Pirker, A. Green, W. Crist, G.M. Brodeur, M. Lieber, J. Cossman, M.M. Gottesman, I. Pastan, Expression of multidrug resistance gene in human cancers, J. Natl. Cancer Inst. 81 (1989) 116
    [53] D.Von Hoff, M. Rozencweig, M. Piccart, The cardiotoxicity of
    anticancer agents, Semin. Oncol. 9 (1982) 23
    [54] W.A.R.Van Heeswijk, T. Stoffer, M.J.D. Eenick,W. Potman, W.J.F. Van der Vijgh, J. Van der Poort, H.M. Pinedo, P. Lelieveld, J. Feijen, Synthesis, characterization and anti-tumor activity of acromolecular
    prodrugs of adriamycin, in: J.M. Anderson, S.W. Kim (Eds.), Recent
    Advances in Drug Delivery Systems, Plenum, New York, (1984) 77
    [55] D.J. Kerr, Microparticulate drug delivery systems as an adjunct to cancer treatment, Cancer Drug Deliv. 4 (1987) 55
    [56] C. Jones, M.A. Burton, B.N. Gray, Albumin microspheres as vehicles for the sustained and controlled release of doxorubicin, J. Pharm. Pharmacol. 41 (1989) 813
    [57] G.S. Kwon, M. Naito, Y. Masayuki, T. Okano, Y. Sakurai, K. Kataoka, Physical entrapment of adriamycin in AB block copolymer micelles, Pharm. Res. 12 (1995) 192
    [58] P. Couvreur, L. Roblot-Treupel, M.F. Poupon, F. Brasseur, F. Puisieux, Nanoparticles as microcarriers for anticancer drugs, Adv. Drug Deliv. Rev. 5 (1990) 209
    [59] Kevin A. Janes, Marie P. Fresneau , Ana Marazuela , Angels
    Fabra, Marýa Jose Alonso, Journal of Controlled Release 73 (2001)
    255
    [60] S. I. Kang, K. Na, Y. H. Bae, Colloids and Surfaces A: Physicochem. Eng. Aspects 231 (2003) 103
    [61] H. S. Yoo, K. H. Lee, J. E. Oh, T. G. Park, Journal of Controlled Release 68 (2000) 419
    [62] S. Mitra, U. Gaur, P. C. Ghosh, A. N. Maitra, Journal of Controlled Release 74 (2001) 317
    [63] S.E. Gelperina, A.S. Khalansky, I.N. Skidan, Z.S. Smirnova c,
    A.I. Bobruskin, S.E. Severin, B. Turowski, F.E. Zanella, J. Kreuter, Toxicology Letters 126 (2002) 131
    [64] A. Fundaro, R. Cavalli, A. Bargoni, D. Vighetto, G. P. Zara, M. R. Gasco, Pharmacological Research, Vol. 42, No. 4, 2000 337
    [65] J. Kreuter, Advanced Drug Delivery Reviews 47 (2001) 65
    [66] R. Gorodetskya, L. Levdanskya, A. Vexlera, I. Shimeliovicha,
    I. Kassisa, M. Ben-Mosheb, S. Magdassib, G. Marx, Journal of Controlled Release 95 (2004) 477
    [67] A. Gabizon, R. Shiota, D. Papahadjopoulos, Pharmacokinetics and
    tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times, J. Natl. Cancer Inst. 81 (1989) 1484
    [68] Rom E. Eliaz and Francis C. Szoka, Jr.2, Cancer Res. 2001 Mar 15; 61(6):2592
    [69] International Journal of Clinical Pharmacology and Therapeutics, Vol. 40 – No. 8/2002 (387-388)
    [70] G. Batist, G. Ramakrishnan, C. S. Rao, A. Chandrasekharan, J. Gutheil, T. Guthrie, P. Shah, A. Khojasteh, M. K. Nair, K. Hoelzer, K. Tkaczuk, Y. C. Park, L. W. Lee, Journal of Clinical Oncology, Vol 19, Issue 5 (March), 2001: 1444-1454
    [71] C. L. Shapiro, T. Ervin, L. Welles, N. Azarnia, J. Keating, Daniel F. Hayes, Journal of Clinical Oncology, Vol 17, Issue 5 (April), 1999: 1435
    [72] Y. S. Kang, S. Risbud, J. F. Rabolt, P. Stroeve, Chem. Mater. 1996, 8, 2209-2211
    [73] R.V. Mehta, R.V. Upadhyay, S.W. Charles, C.N. Ramchand, Biotechnol. Tech. 11 (1997) 493
    [74] M. Koneracká, P. Kopcanský, M. Antal´ýk, M. Timko, C.N. Ramchand, D. Lobo, R.V. Mehta, R.V. Upadhyay, J. Magn. Magn. Mater. 201 (1999) 427
    [75] D. H. Chen., M. H. Liao, Journal of Molecular Catalysis B:
    Enzymatic 16 (2002) 283
    [76] Bacri, J. C., Perzynski, R., Salin, D., Cabuil, V. and Massart,
    R(1990). J. Magn. Magn. Mater. 85, 27-32.
    [77] M.Y. Arica, H. Yavuz, S. Patir, A. Denizli, J. Mol. Catal. B Enzymatic 11 (2000) 127
    [78] R. I. Freshney, Measurement of viability and cytotoxicity, in: Culture of Animal Cells, 3rd Edition, Wiley-Liss Inc, New York, 1994, pp.287-307, Chapter 19.
    [79] P.J. Halling, P. Dunnill, Enzyme Microb. Technol. 2 (1980) 2
    [80] H. Kobayashi, T. Matsunaga, J. Colloid Interface Sci. 141 (1991) 505
    [81] A. Kondo, H. Fukuda, J. Ferment. Bioeng. 84 (1997) 337
    [82] M. Reetz, A. Zonta, V. Vijayakrishnan, K. Schimossek, J. Mol. Catal. A Chem. 134 (1998) 251
    [83] S. Roath, J. Magn. Magn. Mater. 122 (1993) 329
    [84] S.V. Sonti, A. Bose, J. Colloid Interface Sci. 170 (1995) 575
    [85] X.D. Tong, B. Xue, Y. Sun, Biotechnol. Prog. 17 (2001) 134
    [86] T.M. Cocker, C.J. Fee, R.A. Evans, Biotechnol. Bioeng. 53 (1997) 79
    [87] W. Schütt, C. Grüttner, U. Häfeli, M. Zborowski, J. Teller, H. Putzar, C. Schümichen, Hybridoma 16 (1997) 109
    [88] F. Sauzedde, A. Elaissari, C. Pichot, Macromol. Symp. 151 (2000) 617
    [89] W. Schütt, C. Grüttner, J. Teller, F. Westphal, U. Häfeli, B. Paulke, P. Goetz, W. Finck, Artif. Organs 23 (1999) 98
    [90] S.R. Rudge, T.L. Kurtz, C.R. Vessely, L.G. Catterall, D.L. Williamson, Biomaterials 21 (2000) 1411
    [91] A.R. Varlan, J. Suls, P. Jacobs, W. Sansen, Biosens. Bioelectron. 10 (1995) 15
    [92] T.N. Krogh, T. Berg, P. Højrup, Anal. Biochem. 274 (1999) 53
    [93] J.L. West, N.J. Halas, Curr. Opin. Biotechnol. 11 (2000) 215
    [94] A. Curtis, C. Wilkinson, TIBTECH 19 (2001) 97
    [95] P.A. Dresco, V.S. Zaitsev, R.J. Gambino, B. Chu, Langmuir15 (1999) 1945
    [96] 石凱元, 酵素水解牛第一型膠原蛋白之研究, 成功大學化學研究所碩士論文, 台灣 (2003)
    [97] J. Li, J. Wang, V. G. Gavalas, D. A. Atwood, L. G. Bachas, Nano Lett., Vol. 3, No. 1, 2003, 55-58
    [98] S. Phadtare, A. Kumar, V. P. Vinod, C. Dash, D. V. Palaskar, M. Rao, P. G. Shukla, S. Sivaram, M. Sastry, Chem. Mater. 2003, 15, 1944-1949
    [99] J. Frýdlová , Z. Kucerová, M. Tichá, Journal of Chromatography B, 800 (2004) 109
    [100] A. Gole, C. Dash, V. Ramakrishnan, S. R. Sainkar, A. B. Mandale, M. Rao, M. Sastry, Langmuir 2001, 17, 1674-1679

    下載圖示 校內:2005-07-08公開
    校外:2005-07-08公開
    QR CODE