| 研究生: |
孫珮怡 Sun, Pei-Yi |
|---|---|
| 論文名稱: |
具輸入與狀態限制的大尺度系統之分散式自適應控制之數位再設計 Digital Redesign of the Decentralized Adaptive Control for Linear Large-Scale Systems under Control and State Constraints |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 分散式控制 、狀態限制 、自適應控制 、數位再設計 、大尺度系統 、互聯系統 、輸入限制 |
| 外文關鍵詞: | control constraints, state constraints, large-scale system, Decentralized, adaptive, digital redesign, interconnected systems |
| 相關次數: | 點閱:140 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文中,新提出一種個別針對多輸入多輸出之連續時間及取樣資料的大尺度系統所使用的連續時間與數位再設計分散式自適應控制的理論。對於一些物理性質上的考量,必須藉由進化論演算法加以考慮控制輸入及狀態限制,以調整有關連續時間和取樣資料大尺度系統的相關參數。閉迴路系統在沒有重大性能損失下,仍能滿足控制輸入及狀態限制,而所提出的分散式自適應控制理論可令系統狀態符合參考模型狀態。最後以一個互相連結的線性系統例證說明於此所提出之設計理論的可效性。
In this thesis, a continuous-time decentralized adaptive control and a digital redesigned decentralized adaptive control are newly presented for the continuous-time large-scale system and the sampled-data large-scale system with multi-input multi-output (MIMO) subsystems, respectively. For some physical considerations, the control and state constraints are necessary to be involved to modify the decentralized adaptive control of the continuous-time large-scale system and the sampled-data large-scale system by evolutionary programming (EP) algorithm. The closed-loop system satisfies control and state constraints without any significantly loss of the original performances. The proposed decentralized adaptive control makes states of the system follow those of the reference model closely. An illustrative example of interconnected linear system is presented to demonstrate the effectiveness of the proposed design methodology.
[1] S. E. Lyshevski, “Aircraft Flight Control System Design under State and Control bounds,” IEEE Transaction Aerospace and Electronic Systems, vol. 34, no. 1, pp. 257-263, Jan, 1998.
[2] W. C. Durham, “Constrained Control Allocation,” Journal of Guidance, Control and Dynamics, vol. 16, no. 4, pp. 717-725, 1993.
[3] H. S. Wu, “Decentralized Robust Control for A Class of Large-Scale Interconnected Systems with Uncertainties,” International Journal of System Science, vol. 20, no. 12, pp. 2597–2608, 1989.
[4] M. Jamshidi, Largescale System: Modeling and Control, New York: Elserier Science Publishing, 1983.
[5] E. J. Davison, “The Robust Decentralized Control of Servomechanism Problem for Composite System with Input-Output Interconnection,” IEEE Transactions on Automatic Control, AC-24, no. 2, pp. 325-327, Apr. 1979.
[6] P. A. Ioannou and J. Sun, Robust Adaptive Control, Prentice Hall, 1996.
[7] G. C. Goodwin K. S. Sin, Adaptive Filtering Prediction and Control, Prentice-Hall, 1984.
[8] B. M. Mirkin, “Decentralized Adaptive Controller with Zero Residual Tracking Errors,” Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel, pp. 28-30, Jun. 1999.
[9] B. M. Birkin, “Proportional-Integral-Delayed Algorithm of Adaptation,” Automation, no. 5, pp. 13-20, 1991.
[10] C. H. Houpis and G. B. Lamont, Digital Control Systems, New York: McGraw Hill, 1985.
[11] B. C. Kuo, Digital Control Systems, New York: Holt, Rinehart and Winston, 1980.
[12] T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems, Spring-Verlag, New York, 1995.
[13] H. Fujimoto, Y. Hori, and A. Kawamura, “Perfect Tracking Control Based on Multirate Feedforward Control with Generalized Sampling Periods,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 636-644, Jun. 2001.
[14] H. Fujimoto, A. Kawamura and M. Tomizuka, “Generalized Digital Redesign Method for Linear Feedback System Based on N-Delay Control,” IEEE /ASME Transactions on Mechatronics, vol. 4, pp. 101-109, Jun. 1999.
[15] T. Ieko, Y. Ochi and K. Kanai, “Digital Redesign of Linear State-Feedback Law via
Principle of Equivalent Areas,” Journal of Guidance, Control and Dynamics, vol. 24, pp. 857-859, 2001.
[16] L. S. Shieh, W. M. Wang, and M. K. Appu Panicker, “Design of PAM and PWM Digital Controllers for Cascaded Analog Systems,” ISA Transactions, vol. 37, pp. 201-213, Dec. 1998.
[17] T. Yang and L. O. Chua, “Control of Chaos Using Sampled-Data Feedback Control,” International Journal of Bifurcation and Chaos, vol. 8, pp. 2433-2438, 1998.
[18] N. Rafee, T. Chen, and O. P. Malik, “A Technique for Optimal Digital Redesign of Analog Controllers,” IEEE Transactions on Control Systems Technology, vol. 5, no. 1, pp. 89-99, Jan. 1997.
[19] D. Fogel, Evolutionary Computation, Piscataway, NJ: IEEE Press, 1995.
[20] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolutionary Programs, New York: Springer-Verlag, 1996.
[21] Y. P. Chang, S. H. Tsai, and L. S. Shieh, “Optimal Digital Redesign of Hybrid Cascaded Input-Delay Systems under State and Control Constraints,” IEEE Transaction on Circuits and Systems, vol. 49, no. 9, pp. 1382-1392, Sep. 2002.
[22] K. S. Narendra and N. O. Oleng’, “Exact Output Tracking in Decentralized Adaptive Control Systems,” IEEE Transaction on Automatic Control, vol. 47, no. 2, pp. 390–395, Feb. 2002.
[23] D. T. Gavel and D. D. Siljak, “Decentralized Adaptive Control: Structural Conditions for Stability,” IEEE Transactions on Automatic Control, vol. 34, no. 4, pp. 413-426, Apr. 1989.
[24] K. S. Narendra and N. O. Oleng’, “Exact Output Tracking in Decentralized Adaptive Control Systems,” Center for Systems Science, Yale University, New Haven, CT, Tech. Rep. 0104, 2001.
[25] L. Shi and S. K. Singh, “Decentralized Adaptive Controller Design of Large-Scale Systems with Higher Order Interconnections,” IEEE Trans. Automat. Contr., vol. 37, pp. 1106-1118, Aug. 1992.
[26] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems, Upper Saddle River, NJ: Prentice-Hall, 1989.
[27] K. S. Narendra and N. O. Oleng’, “Exact Output Tracking in Decentralized Adaptive Control Systems,” Center for Systems Science, Yale University, New Haven, CT, Tech. Rep. 0104, 2001.
[28] S. H. Tsai, C. L. Wei, S. M. Guo, L. S. Shieh, and C. R. Liu, “EP-Based Adaptive Tracker with Observer and Fault Estimator for Nonlinear Time-Varying Sampled-Data Systems Against Actuator Failures,” Journal of the Franklin Institute, vol. 305, pp. 508-535, 2008.
[29] D. T. Gravel and D. D. Siljak, “Decentralized Adaptive Control: Structures Conditions for Stability,” IEEE Transaction Automatic Control, vol. 34, pp. 413-426, Apr. 1989.