| 研究生: |
郭信宏 Kuo, Shin-Hung |
|---|---|
| 論文名稱: |
透明生物晶片平台應用於細胞膜片箝制技術之研製 Development of Transparent Biochip Platform for Patch Clamp Technology |
| 指導教授: |
羅錦興
Luo, Ching-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 軟微影 、感應耦合電漿離子蝕刻 、微機電系統 、膜片箝制 |
| 外文關鍵詞: | MEMS, ICP-RIE, Soft lithography, Patch clamp |
| 相關次數: | 點閱:88 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單細胞研究於組織工程學、藥物篩選、DNA表現,均扮演關鍵的角色。然而,由全細胞膜片箝制得到離子通道的活動是不易的。因此,如何降低膜片箝制的操作難度,使全世界的任一實驗室均能共同參與,是現在一個熱門的研究主題。
藉由微機電系統技術製造生物晶片是一個可行的方法。採用軟微影技術可從微製作的矽母模複製得到PDMS的透明單細胞晶片平台,並實現高通量膜片箝制的目標;藉由三次的黃光微影與感應耦合電漿離子蝕刻製程-來完成含有陣列式三階同心圓柱微結構的矽母模;使用互相堆疊的金屬罩幕技術,使想要的1 μm圖案可精確地從光罩轉移到矽基板,並且擁有很高的良率;利用最佳化ICP-RIE製程參數可使矽蝕刻表面的粗糙度降到1 μm以下。而非破壞性PDMS脫模技術可使矽母模能不斷地重複使用。此PDMS晶片平台精確地控制為1~2 μm的微孔洞。且使用軟微影技術也使得製程簡單,並大量降低成本來符合經濟效益。
利用膜片箝制系統量測晶片阻抗得知:含有1.5 μm孔洞的PDMS晶片電阻為1.81 MΩ、晶片電容為1.6 pF。在高通量特性與自動膜片箝制性能方面,此PDMS晶片於多膜片箝制記錄上有很大的潛力可取代傳統玻璃微吸管。此研究將使DNA表現理論有突破性的進展。
The single cell study is crucial for tissue engineering, drug screening, and DNA expressions. However, it is so difficult to get the ion channel activity by whole cell clamp. Therefore, how to release the difficulty in patching clamp for the world wide use in any lab becomes a hot issue now.
Biochip fabricated by N/MEMS techniques is one alternative to make it come true. The transparent single cell biochip platform is manufactured in poly-dimethylsioxane (PDMS) by soft lithography technology from a microfabricated silicon master to achieve high throughput on patch clamping. The silicon masters with three levels pillar shape structure array are fabricated via three times photolithography and inductive coupled plasma-reactive ion etching (ICP-RIE) processes. A high yield nested metal masks approach is used in order to transfer the desirable 1 μm patterns precisely from photo mask to the silicon substrate. Surface roughness is reduced below 1 μm by optimizing the ICP-RIE process parameters. The silicon master is suitable to be reused many times with using PDMS nondestructive releasing process. The fabricated PDMS micro platforms contain precise apertures of 1-2 μm diameters. The fabrication is sufficiently simple and economical by using soft lithography technologies.
In the impedance measurement with patch-clamp equipment, the open resistance and capacitance of PDMS chip with 1.5 μm aperture are 1.81 MΩ and 1.6 pF, respectively. Based on the performance, the high-throughput characteristic and possibility of automation on patch clamping, these PDMS chips have a large potential to replace the traditional glass pipettes on multiple patch clamp recordings. The breakthrough is coming soon to push DNA expressions theory forward with a great step.
[1] Y. C. Lu, “Using Surface Micromachining Implement Single Cell Biochip Platform”, Master’s Thesis, Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 2007.
[2] N. Fertig, R. H. Blick, J. C. Behrends, “Whole Cell Patch Clamp Recording Performed on a Planar Glass Chip”, Biophysical Journal, Vol. 82, pp. 3056-3062, 2002.
[3] C. Y. Chen, T. Y. Tu, C. H. Chen, D. S. Jong, A. M. Wo, “Patch clamping on plane glass – fabrication of hourglass aperture and high-yield ion channel recording”, Lab on a Chip, in press, 2009.
[4] K. G. Klemic, J. F. Klemic, M. A. Reed, F. J. Sigworth, “Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells”, Biosensors and Bioelectronics, Vol. 17, pp. 597–604, 2002.
[5] K. G. Klemic, J. F. Klemic, F. J. Sigworth, “An air-molding technique for fabricating PDMS planar patch-clamp electrodes”, Pflugers Arch, 449, pp. 564-572, 2005.
[6] X. Li, K. G. Klemic, M. A. Reed, F. J. Sigworth, “Microfluidic System for Planar Patch Clamp Electrode Arrays”, Nano Letters, Vol. 6, No. 4, pp. 815-819, 2006.
[7] A. Y. Lau, P. J. Hung, A. R. Wu, L. P. Lee, “Open-access microfluidic patch-clamp array with raised lateral cell trapping sites”, Lab on a Chip, Vol. 6, pp. 1510-1515, 2006
[8] C. C. Chen, A. Folch, “A high-performance elastomeric patch clamp chip”, Lab on a Chip, Vol.6, pp. 1338-1345, 2006.
[9] E. Ostuni, R. Kane, C. S. Chen, D. E. Ingber, G. M. Whitesides, “Patterning Mammalian Cells Using Elastomeric Membranes”, Langmuir, Vol.16, pp. 7811-7819, 2000.
[10] L. Sainiemi, S. Franssila, “Mask material effects in cryogenic deep reactive ion etching”, Journal of Vacuum Science and Technology B, 25, pp. 801-807, 2007.
[11]M. D. Henry, C. Welch, A. Scherer, “Techniques of cryogenic reactive ion etching in silicon for fabrication of sensors”.
[12] H. Andersson, W. van der Wijngaart, P. Nilsson, P. Enoksson, G. Stemme, “A valve-less diffuser micropump for microfluidic analytical systems”, Sensors and Actuators B, Chemical, 72, pp. 259-265, 2001.
[13] L. Sainiemi, T. Missila, V. Jokinen, T. Sikanen, T. Kotiaho, R. Kostiainen, R. A. Ketola, S. Franssila, “Fabrication and fluidic characterization of silicon micropillar array electrospray ionization chip”, Sensors and Actuators B, Chemical, 132, pp. 380-387, 2008.
[14] H. Jansen, M. de Boer, R. Legtenberg, M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control”, Journal of Micromechanics and Microengineering, Vol. 5, pp. 115-120, 1995.