| 研究生: |
李偉民 LI, WEI-MIN |
|---|---|
| 論文名稱: |
奈米金屬氧化物之合成及應用於低損耗微波介電陶瓷之研究 Synthesis of Metal Oxide Nanostructures and Applications to Low Dielectric Loss Microwave Ceramics |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 共同指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 鈦酸鎂 、鈦酸鋅 、奈米線 、水熱法 、濾波器 |
| 外文關鍵詞: | MgTiO3, ZnTiO3, Nanowires, Hydrothermal, Filter |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,奈米材料的合成方法和應用吸引了相當大的注意,因為其獨特的特性,使得奈米材料被廣泛地應用於各個領域。而奈米材料也已經被證明在陶瓷製程上可以得到良好的特性;此外,低介電損耗的材料在微波頻率扮演著相當重要的角色。所以,在本篇論文中以化學法合成奈米等級的材料,將它應用於低介電損耗微波陶瓷上,並研究奈米材料燒結過程的行為變化。如上所述,本論文的主要研究方向將分成四個部分,包含:奈米材料的合成、超低介電損耗鈦酸鎂陶瓷、低燒結溫度合成鈦酸鋅材料、水溶液中六價鉻的移除和2.4 GHz共平面波導濾波器的應用。
本論文以化學法合成氧化鋅奈米棒、二氧化鈦奈米線、氫氧化鎂奈米球等,將其量產並應用為鈦酸鎂及鈦酸鋅微波介電陶瓷合成,觀察奈米粉末於陶瓷燒結行為和介電特性的影響。
使用反應式燒結法在1400 oC合成的鈦酸鎂具有低介電損耗的優點(ε_r= 15.2, Q×f= 186,000 GHz , τ_f= ~ -55),而使用傳統固態法燒結在1300 oC之鈦酸鎂具有極高之Q×f為368,000 GHz、ε_r值為15、τ_f為-56。論文中嘗試以晶格常數間之關係和晶粒大小分佈去解釋高Q×f值產生原因。Zn2TiO4陶瓷具有高密度及介電常數、負的溫度頻率飄移係數以及高Q×f。藉由二氧化鈦的添加,當添加8 wt.% TiO2時,ε_r= ~24、Q×f= 36,300 GHz;當添加12 wt.% TiO2時,ε_r= ~22、Q×f= 30,000 GHz、τ_f= ~0。
本論文中將一2.4 GHz共平面波導帶通濾波器應用於FR-4、氧化鋁、鈦酸鎂自製基板上,而使用鈦酸鎂基板製作的濾波器可大幅縮小百分之五十電路面積。
In recent years, applications and synthesis route of nanoscaled materials have attracted a lot of attention. Because of their unique properties, nanoparticles were widely applied to many fields. The nanoparticles have also been proven to benefit the fabrication of ceramics. In addition, the low dielectric loss materials play important roles in microwave frequency. Therefore, the nanoscaled materials were synthesized by chemical routes and applied in microwave low dielectric loss ceramics in this thesis. The behavior of nanoparticles sintering was investigated. The applications of nanoparticles and dielectric are also realized. As mentioned above, the main research of this dissertation is divided into four parts which synthesis of nanoparticles, ultra low dielectric loss magnesium titanate ceramics, low sintering temperature zinc titanate ceramics, applications to hexavalent chromium removal and CPW resonator.
ZnO nanorods, TiO2 nanowires (~220 m2/g), and Mg(OH)2 nanospheres (~90 m2/g) were synthesized by chemical routes. Then, the nanoscaled powders were made for mass production and used as starting materials for ceramic sintering. The sintering behaviors and dielectric behaviors of zinc titanate and magnesium titanate were elucidate and compared.
Magnesium titanate with low loss tangent (ε_r = 15.2, Q×f = 186,000 GHz , τ_f = ~ -55) was synthesized by reactive sintering method at 1400 oC. An extremely high Q×f of 368,000 GHz (ε_r = 15, τ_f = ~ -56 ) can be achieved by classical sintering at 1300 oC. The lattice constant and grain size distribution were measured to explain the Q×f difference caused by the different ceramics and initial powders.
Zn2TiO4 with sufficient density, a moderate dielectric constant, a negative τ_f, and a high Q×f value have potential applications to LTCCs or microwave devices. In Zn2TiO4:xTiO2 syntheses: additive of 8 wt.% of TiO2: ε_r = ~24, Q×f = 36,300 GHz, additive of 12 wt.% of TiO2: ε_r = ~22, Q×f = 30,000 GHz, τ_f = ~0
2.4 GHz coplanar waveguide bandpass filters were simulated and designed on FR-4, Al2O3, and MgTiO3 substrates. Using the MgTiO3 substrate, the circuit area was further reduced to 50%.
1. J. Moulson, J. M. Herbert, “Electroceramics, second edition”, Wiley, 300, 2003.
2. W. Hakki, P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range”, IEEE Trans. Microwave Theory Technol., 8, 402,1960.
3. Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method", IEEE Trans. Microwave Theory Tech., MTT-33, 586, 1985.
4. Q. Zhen, G. M. Kale, G. Shi, R. Li, W. He, and J. Liu, "Processing of Dense Nanocrystalline Bi2O3–Y2O3 Solid Electrolyte", Solid State Ionics, 176, 2727,2005.
5. Q. Zhen, G. M. Kale, W. He, J. Liu, "Microwave Plasma Sintered Nanocrystalline Bi2O3–HfO2–Y2O3 Composite Solid Electrolyte", Chem. Mater., 19, 203, 2007.
6. H. Hahn, J. Logas, R. Averback, "Sintering Characteristics of Nanocrystalline TiO2", J. Mater. Res., 5, 609, 1990.
7. K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technique: A Technology for Crystal Growth and Materials Processing, William Andrew Publishing, Norwich, NY, 2001.
8. J. Yang, S. Mei, J. M. F. Ferreira, "Hydrothermal Synthesis of Nanosized Titania Powders: Influence of Peptization and Peptizing Agents on the Crystalline Phases and Phase Transitions", J. Am. Ceram. Soc., 83, 1361, 2000.
9. J. Yang, S. Mei, J. M. F. Ferreira, "Hydrothermal Synthesis of Nanosized Titania Powders: Influence of Tetraalkyl Ammonium Hydroxides on Partile Characteristics", J. Am. Ceram. Soc., 84, 1696, 2001.
10. J. Yang, S. Mei, J. M. F. Ferreira, "Hydrothermal Synthesis of Well-Dispersed TiO2 Nano-Crystals", J. Mater. Res., 17, 2197, 2002.
11. X. Li, G. M. Kale, "Urea-Based Hydrothermal Synthesis of ITO Nanopowders", J. Phys.: Conf. Ser., 26, 319, 2006.
12. T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, I. C. Chen, ” ZnO Nanowire-Based CO Sensors Prepared at Various Temperatures”, J. Electrochem. Soc., 154, J393, 2007.
13. K. Huo, X. Zhang, L. Hu, X. Sun, J. Fu, P. K. Chu, “One-step growth and field emission properties of quasialigned TiO2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates”, Appl. Phys. Lett., 93, 013105, 2008.
14. U. Cvelbar, K. Ostrikov, A. Drenik, M. Mozetic, “Nanowire sensor response to reactive gas environment”, Appl. Phys. Lett., 92, 133505, 2008.
15. J. Q. Hu, X.L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, S. T. Lee, "Characterization of zinc oxide crystal whiskers grown by thermal evaporation", Chem. Phys. Lett., 344, 97, 2001.
16. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (012) sapphire by metalorganic chemical vapor deposition”, J. Appl. Phys., 85, 2595, 1999.
17. Z. Fan,J. G. Lu, “Zinc Oxide Nanostructures: Synthesis and Properties”, J. Nanosci. Nanotech., 5, 1561, 2005.
18. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger,R. J. Saykally, P. Yang, “Nanoribbon Waveguides for Subwavelength Photonics Integration”, Science, 305, 1269, 2004.
19. W.J. Li, E.W. Shi, W.Z. Zhong, Z. Yin, "Growth mechanism and growth habit of oxide crystals", J. Cryst. Growth, 203, 186, 1999.
20. Lu, C. Yeh, "Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder", Ceram. Int., 26, 351, 2000.
21. B. G. Wang, E. W. Shi, W. Z. Zhong, "Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions", Cryst. Res. Technol., 33, 937, 1998.
22. J. Zhang, L. Sun, H. Pan, C. Liao, C. Yan, "ZnO nanowires fabricated by a convenient route", New J. Chem., 26, 33, 2002.
23. C. Xu, G. Xu, Y. Liu, G. Wang, "A simple and novel route for the preparation of ZnO nanorods", Solid State Commun., 122, 175, 2002.
24. Z. H. Zhou, W. K. Li,Z. Q. Chen, Key. Eng. Mater., 1462, 368, 2008.
25. S. Baldassari, S. Komarneni, E. Mariani, C. Villa, “Microwave-hydrothermal process for the synthesis of rutile”, Mater. Res. Bull., 40, 2014, 2005.
26. Z. Chen, W. Li, W. Zeng, M. Li, J. Xiang, Z. Zhou, J. Huang, "Microwave hydrothermal synthesis of nanocrystalline rutile", Mater. Lett., 62, 4343, 2008.
27. S. R. Dhage, R. Pasricha, V. Ravi, “Synthesis of ultrafine TiO2 by citrate gel method”, Mater. Res. Bull., 38, 1623, 2003.
28. S. R. Dhage, V. Choube, V. Samuel, V. Ravi, “Synthesis of nanocrystalline TiO2 at 100 °C”, Mater. Lett.,58, 2310, 2004.
29. S. J. Kim, S. D. Park, Y. H. Jeong, “Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution”, J. Am. Ceram. Soc., 82, 927, 1999.
30. H. Cheng, J. Ma, Z. Zhao, L. Qi, “Hydrothermal preparation of uniform nanosize rutile and anatase particles”, Chem. Mater., 7, 663, 1995.
31. Y. Li, Y. Fan, Y. Chen, J. Mater. Chem., 12, 1387, 2001.
32. S. J. Kim, S. D. Park, Y. H. Jeong, “Homogeneous Precipitation of TiO2 Ultrafine Powders from Aqueous TiOCl2 Solution”, J. Am. Ceram. Soc., 82, 927, 1999.
33. W. Wang, B. Gu, L. Liang, W. A. Hamilton, D. J. Wesolowski, “Synthesis of Rutile (α-TiO2) Nanocrystals with Controlled Size and Shape by Low-Temperature Hydrolysis: Effects of Solvent Composition”, J. Phys. Chem. B, 108, 14789, 2004.
34. A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles, J. P. Jolivet, J. Mater. Chem., 11, 1116, 2001.
35. K. N. P. Kumar, K. Keizer, A. J. Burggraaf, T. Okubo, H. Nagamoto, J. Mater. Chem., 3, 923, 1993.
36. H. Cheng, J. Ma, Z. Zhao, L. Qi, “Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles”, Chem. Mater., 7, 663, 1995.
37. B. O’Regan, M. Gra¨tzel, "A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films", Nature, 353, 737, 1991.
38. M. Gra¨tzel, "Mesoscopic Solar Cells for Electricity and Hydrogen Production from Sunlight", Chem. Lett., 34, 8, 2005.
39. A. Fujishima, T. N. Rao, D. A. Tryk, "TiO2 Photocatalysts and Diamond Electrodes", Electrochim. Acta, 45, 4683, 2000.
40. K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima, "Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts," Environ. Sci. Tech., 32, 726,1998.
41. R. Wang, K. Hashimoto, A. Fujishima, "Light-Induced Amphiphilic Surfaces", Nature, 388, 431,1997.
42. H. Tsuji, F. Yagi, H. Hattori, H. Kita, “Self-Condensation of n-Butyraldehyde over Solid Base Catalysts”, J. Catal., 148, 759, 1994.
43. H. H. Huang, W. C. Shih, C. H. Lai, ” Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device”, Appl. Phys. Lett., 96, 193505, 2010.
44. Laoutid, L. Ferry, J. M. Lopez-Cuesta, A. Crespy, “Flame-retardant action of red phosphorus/magnesium oxide and red phosphorus/iron oxide compositions in recycled PET”, Fire and Mater., 30, 343, 2006.
45. P. S. Murty, N. S. Geetha, S. M. Marathe, “Spectrographic Analysis of Refractory Magnesium Oxide: A Buffer Approach”, Fresenius J. Anal. Chem., 314, 152, 1983.
46. C. F. Shih, W. M. Li, M. M. Lin, and K. T. Hung, ”Zinc Titanates Sintered from ZnO and TiO2 Nanowires Prepared by a Hydrothermal Process”, J. Electrochem. Soc., 156, E13, 2009.
47. C. F. Shih, W. M. Li, M. M. Lin, K. T. Hong, C. Y. Hsiao, and C. L. Lee, “Sintering of ZnO and TiO2 Nanostructures”, Electrochem. Solid State Lett., 11, K105, 2008.
48. Y. Takeshi, N. Kazuki, T. Hidekazu, K. Tomoji, ” Mechanism of catalyst diffusion on magnesium oxide nanowire growth”, Appl. Phys. Lett., 91, 061502, 2007.
49. J. H. Zhan, Y. Bando, J. Q. Hu, D. Golberg, “Bulk Synthesis of Single-Crystalline Magnesium Oxide Nanotubes”, Inorg. Chem., 43, 2462, 2004.
50. W. Fan, X. Song, S. Sun, X. Zhao, “Hydrothermal formation and characterization of magnesium hydroxide chloride hydrate nanowires”, J. Cryst. Growth., 305, 167, 2007.
51. Fievet, J. P. Lagier, M. Figlarz, “Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process”, MRS Bull., 14, 29, 1989.
52. Y. Sun, Y. Xia, “Shape-Controlled Synthesis of Gold and Silver Nanoparticles”, Science, 298, 2176, 2002.
53. A. Subramania, G. V. Kumar, A. R. S. Priya, T. Vasudevan, “Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires”, Nanotechnology, 18, 225601, 2007.
54. J. Liu, X. Huang, “A low-temperature synthesis of ultraviolet-light-emitting ZnO nanotubes and tubular whiskers”, J. Solid state Chem., 179, 2006, 2007.
55. A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, D. Suvorov, “High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4,” J. Am. Ceram. Soc., 89, 3441, 2006.
56. Belous, O. Ovchar, D. Durylin, M. Valant, M. M. Krzmancc, D. Suvorov, “Microwave Composite Dielectrics Abased on Magnesium Titanates,” J. Eur. Ceram. Soc., 27, 2963, 2007.
57. L. Huang and S. S. Liu, “Characterization of Extremely Low Loss Dielectrics (Mg0.95Zn0.05)TiO3 at Microwave Frequency,” Jpn. J. Appl. Phys., 46, 283, 2007.
58. L. Huang, S. S. Liu, “Low-Loss Microwave Dielectrics in the (Mg1-xZnx)2TiO4 Ceramics,” J. Am. Ceram. Soc., 91, 3428, 2008.
59. J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values,” Jpn. J. Appl. Phys., 33, 5466, 1994.
60. X. J. Kuang, J. T. Xia, F. H. Liao, C. H.Wang, L. Li, X. P. Jing, “Doping Effects of Ta on Conductivity and Microwave Dielectric Loss of MgTiO3 Ceramics,” J. Am. Ceram. Soc., 99, 3142, 2007.
61. V. M. Ferreira, J. L. Baptista, “Role of Niobium in Magnesium Titanate Microwave Dielectric Ceramics,” J. Am. Ceram. Soc., 79, 1697, 1996.
62. X. Kuang, X. Jing, Z. Tang, “Dielectric Loss Spectrum of Ceramic MgTiO3 Investigated by AC Impedance and Microwave Resonator Measurements,” J. Am. Ceram. Soc., 89, 241, 2006.
63. S. Kim, C. J. Jeon, “Microwave Dielectric Properties of ATiO3 (A=Ni, Mg, Co, Mn) Ceramics,” J. Eur. Ceram. Soc., 30, 341, 2010.
64. Y. M. Miao, Q. L. Zhang, H. Yang, H. P. Wang, “Low-Temperature Synthesis of Nano-Crystalline Magnesium Titanate Materials by the Sol–Gel Method,” Mater. Sci. Eng. B, 128, 103, 2006.
65. M. U. Cohen, “Precision Lattice Constants from X-Ray Powder Photographs,” Rev. Sci. Instrum., 6, 68, 1935.
66. M. U. Cohen, “Errata; Precision Lattice Constants from X-Ray Powder Photographs,” Rev. Sci. Instrum., 7, 155, 1936.
67. J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values,” Jpn. J. Appl. Phys., 33, 5466, 1994.
68. C. L. Huang and S. S. Liu, “Characterization of Extremely Low Loss Dielectrics (Mg0.95Zn0.05)TiO3 at Microwave Frequency,” Jpn. J. Appl. Phys., 46, 283, 2007.
69. C. L. Huang, S. S. Liu, “Low-Loss Microwave Dielectrics in the (Mg1-xZnx)2TiO4 Ceramics,” J. Am. Ceram. Soc., 91, 3428, 2008.
70. X. J. Kuang, J. T. Xia, F. H. Liao, C. H.Wang, L. Li, X. P. Jing, “Doping Effects of Ta on Conductivity and Microwave Dielectric Loss of MgTiO3 Ceramics,” J. Am. Ceram. Soc., 99, 3142, 2007.
71. V. M. Ferreira, J. L. Baptista, “Role of Niobium in Magnesium Titanate Microwave Dielectric Ceramics,” J. Am. Ceram. Soc., 79, 1697, 1996.
72. K. Huo, X. Zhang, L. Hu, X. Sun, J. Fu, P. K. Chu, “One-step growth and field emission properties of quasialigned TiO2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates”, Appl. Phys. Lett., 93, 013105, 2008.
73. U. Cvelbar, K. Ostrikov, A. Drenik, M. Mozetic, “Nanowire sensor response to reactive gas environment”, Appl. Phys. Lett., 92, 133505, 2008,
74. Z. M. Liao, J. Xu, J. M. Zhang, D. P. Yu, “Temperature dependence of photoconductivity and persistent photoconductivity of single ZnO nanowires”, Appl. Phys. Lett., 93, 023111, 2008.
75. J. Zhang, P. J. Li, H. Sun, X. Shen, T. S. Deng, K. T. Zhu, Q. F. Zhang, J. L. Wu, “Ultraviolet electroluminescence from controlled arsenic-doped ZnO nanowire homojunctions”, Appl. Phys. Lett., 93, 021116, 2008.
76. T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, I. C. Chen, J. Electrochem. Soc., 154, J393, 2007.
77. K. P. Wang, P. T. Hsiao, H. Teng, Abstract 89, The Electrochemical Society Meeting Abstracts, Vol. 2007-2, Washington, DC, Oct 7–12, 2007.
78. C. L. Huang, J. J. Wang, C. Y. Huang, “Microwave Dielectric Properties of Sintered Alumina Using Nano-Scaled Powders of Alumina and TiO2”, J. Am. Ceram. Soc., 90, 1487, 2007.
79. X. Liu, F. Gao, L. Zhao, C. Tian, “Low-temperature sintered (Zn0.65Mg0.35)TiO3 microwave ceramics doped with CuV2O6”, J. Alloys Compd., 436, 285, 2007.
80. A. Chaouchi, M. Aliouat, S. Marinel, S. d’Asorg, H. Bourahla, “Effects of additives on the sintering temperature and dielectric properties of ZnTiO3 based ceramic”, Ceram. Int., 33, 245, 2007.
81. Y. R. Wang, S. F. Wang, Y. M. Lin, “Low temperature sintering of (Zn1−x, Mgx)TiO3 microwave dielectrics”, Ceram. Int., 31, 905, 2005.
82. H. Dulin, D. E. Rase, “Phase Equilibria in the System ZnO-TiO2”, J. Am. Ceram. Soc., 43, 125, 1960.
83. O. Yamaguchi, M. Morimi, H. Kawabata, K. Shimizu, “Formation and Transformation of ZnTiO3”, J. Am. Ceram. Soc., 70, C97, 1987.
84. H. Dulin, D. E. Rase, “Phase Equilibria in the System ZnO—TiO2”, J. Am. Ceram. Soc., 43, 125, 1960.
85. T. Kim, S. Nahm, J. D. Byun, “Low-Fired (Zn,Mg)TiO3 Microwave Dielectrics”, J. Am. Ceram. Soc., 82, 3476, 1999.
86. Y. S. Chang, Y. H. Chang, I. G. Chen, G. J. Chen, Y. L. Chai, “Synthesis and characterization of zinc titanate nano-crystal powders by sol–gel technique”, J. Cryst. Growth, 243, 319, 2002.
87. E. Hosono, S. Fujihara, M. Onuki, and T. Kimura, “Low-temperature synthesis of nanocrystalline zinc titanate materials with high specific surface area”, J. Am. Ceram. Soc., 877, 1785, 2004.
88. L. Hou, Y. D. Hou, M. K. Zhu, J. Tang, J. B. Liu, H. Wang, H. Yan, “Formation and transformation of ZnTiO3 prepared by sol–gel process”, Mater. Lett., 59, 197, 2005.
89. S. K. Manik, S. K. Pradhan, Physica E (Amsterdam), 33, 69, 2006.
90. N. Obradovic, M. Mitric, M. V. Nikolic, D. Minic, N. Mitrovic, M. M. Ristic, "Influence of MgO addition on the synthesis and electrical properties of sintered zinc–titanate ceramics", J. Alloys Compd., 471, 272, 2009.
91. N. Obradovic, N. Mitrovic, V. Pavlovic, "Structural and electrical properties of sintered zinc-titanate ceramics", Ceram. Int., 35, 35, 2009.
92. T. Kim, S. Nahm, J. D. Byun, “Low-Fired (Zn,Mg)TiO3 Microwave Dielectrics”, J. Am. Ceram. Soc., 82, 3476, 1999.
93. Y. R. Wang, S. F. Wang, Y. M. Lin, “Low temperature sintering of (Zn1−x, Mgx)TiO3 microwave dielectrics”, Ceram. Int., 31, 905, 2005.
94. A. Chaouchi, M. Aliouat, S. Marinel, S. d’Asorg, H. Bourahla, “Effects of additives on the sintering temperature and dielectric properties of ZnTiO3 based ceramic”, Ceram. Int., 33, 245, 2007.
95. T. Kim, K. H. Kim, S. Nahm, J. D. Byun, Y. Kim, “Low-Temperature Sintering and Microwave Dielectric Properties of Zinc Metatitanate-Rutile Mixtures Using Boron”, J. Am. Ceram. Soc., 82, 3043, 1999.
96. T. Kim, Y. Kim, M. Valant, D. Suvorov, “Titanium incorporation in Zn2TiO4 spinel ceramics”, J. Am. Ceram. Soc., 84, 1081, 2001.
97. T. Kim, S. Nahm, J. D. Byun, “Low-Fired (Zn,Mg)TiO3 Microwave Dielectrics”, J. Am. Ceram. Soc., 82, 3476, 1999.
98. O. Yamaguchi, M. Morimi, H. Kawabata, K. Shimizu, “Formation and Transformation of ZnTiO3”, J. Am. Ceram. Soc., 70, C97, 1987.
99. F. H. Dulin, D. E. Rase, “Phase Equilibria in the System ZnO-TiO2”, J. Am. Ceram. Soc., 43, 125, 1960.
100. A. Templeton, X. Wang, S. J. Penn, S. J. Webb, L. F. Cohen, N. McN Alford, “Microwave Dielectric Loss of Titanium Oxide”, J. Am. Ceram. Soc., 83, 95, 2000.
101. B. W. Hakki, P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range”, IEEE Trans. Microwave Theory Technol., 8, 402,1960.
102. Templeton, X. Wang, S. J. Penn, S. J. Webb, L. F. Cohen, N. M. Alford, “Microwave Dielectric Loss of Titanium Oxide”, J. Am. Ceram. Soc., 83, 95, 2000.
103. S. Mor, K. Ravindra, N. R. Bishnoi, “Adsorption of chromium from aqueous solution by activated alumina and activated charcoal”, Biores. Tech., 98, 954, 2007.
104. Y. Li, B. Gao, T. Wu, D. Sun, X. Li, B. Wang, F. Lu, “Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide”, Water Res., 43, 3067, 2009.
105. Gao, W. Zhang, H. Li, L. Lang, Z. Xu, “Controllable Fabrication of Mesoporous MgO with Various Morphologies and Their Absorption Performance for Toxic Pollutants in Water”, Cryst. Growth Des., 8, 3785, 2008.
106. M. Weckhuysen, I. E. Wachs, R. A. Schoonheydt, “Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides”, Chem. Rev., 96, 3327, 1996.
107. M. Gillick, I. D. Robertson, J. S. Joshi, “Design analysis and fabrication of lumpted-distributed branch-line coplanar couplers for coplanar waveguide MMICs”, Microw. Opt. Technol. Lett., 6, 720, 1993.
108. M. Gillick, I. D. Robertson, J. S. Joshi, “Miniaturised 2-stage balanced Ku-band CPW MMIC amplifier using impedance transforming couplers”, Electron. Lett., 29, 670, 1993.
109. M. Gillick, I. D. Robertson, A. H. Aghvami, “Uniplanar techniques for monolithic microwave integrated-circuits”, Electron. Commun. Eng. J., 6, 187, 1994.
110. M. Gillick, I. D. Robertson, “Ultra low impedance CPW transmission line for multilayer MMICs”, IEEE MTT-S Int. Microw. Symp. Dig., 127, June 1994.
111. S. S. Liao, H. K. Chen, Y. C. Chang, K. T. Li, “Novel reduced-size coplanar-waveguide bandpass filter using the new folded open stub structure”, IEEE Microw. Wirelrss compon. Lett., 12, 476, 2002.
112. S. S. Liao, Y. C. Chang, P. T. Sun, W. M. Li, C. Y. Hung, H. K. Chen, C. Y. Lai, “Microwave coplanar frequency tripler with a small-size filter”, IEEE APMC2003 conference, Nov. 2003.
校內:2015-08-03公開