| 研究生: |
陳建弘 Chen, Chien-Hung |
|---|---|
| 論文名稱: |
採用運算放大器共享技術之低電壓管線式類比數位轉換器 Low-Voltage Pipelined A/D Converter Using Opamp-Sharing Technique |
| 指導教授: |
劉濱達
Liu, Bin-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 管線式類比數位轉換器 |
| 外文關鍵詞: | pipelined A/D converter |
| 相關次數: | 點閱:101 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,使用TSMC 0.13 微米一層多晶矽八層金屬之互補式金氧半製程,提出一個具有十位元解析度且每秒取樣十百萬次的管線化類比數位轉換器。為了能夠使這個管線化類比數位轉換器能夠操作在供應電壓只有0.7伏特的情況下,在運算放大器的設計上中融合了具有可靠性解決方案的切換式運算放大器技術和運算放大器共享技術。藉著這些方法,設計出一個具有雙輸出端的運算放大器。這個管線化類比數位轉換器的第一級包含了前端取樣和保留電路(sample-and-hold, S/H)和具有放大倍率的類比數位轉換器使用切換式運算放大器(multiplying–digital-to-analog converter, MDAC)兩種電路。整個十位元的類比數位轉換器只用了五級的運算放大器。如此不但達到在低電壓下操作的要求,更減少了整個類比數位轉換器的功率消耗。
在電路模擬方面,經由HSPICE輔助設計軟體驗證結果。這個具十位元解析度每秒取樣十百萬次的管線化類比數位轉換器,在取樣頻率十百萬赫茲輸入訊號兩百千赫茲下訊號對於雜訊及諧波失真比為 58.44 dB,在供應電壓0.7伏特下,整個電路的功率消耗為 19 mW。
In this thesis, a 10-bit 10-MHz pipelined analog-to-digital converter (ADC) consisted of 1.5-bit/stage has been designed and implemented in the TSMC 0.13-µm 1P8M CMOS process. In order to operate at 0.7 V, the pipelined analog-to-digital converter merges both switched-opamp and opamp-sharing techniques. An opamp with two output stages is employed to incorporate opamp-sharing technique into conventional switched-opamp circuit structure. Low voltage sample-and-hold (S/H) and multiplying–digital-to-analog converter (MDAC) stages utilizing the developed dual-output opamp are introduced. In this work, the ADC is realized in five stages. So, the proposed pipelined ADC can operate under low power supply and reduces the total power consumption.
The A/D converter is simulated by HSPICE. The signal-to-noise and distortion ratio (SNDR) of the pipelined ADC is 58.44 dB with sampling frequency of 10 MHz at input frequency 200 kHz. Power consumption of this ADC is 19 mW with 0.7 V power supply.
[1] P.E Allen and D.R Hoolberg, CMOS Analog Circuit Design. New York: Oxford, 2002.
[2] D. Chang and U. Moon, “A 1.4-V 10-bit 25-MS/s pipelined ADC using opamp-reset switching technique,” IEEE J. Solid-State Circuits, vol. 38, pp. 1401-1404, Aug. 2003.
[3] A. Baschirotto, and R. Castello, “ A 1-V 1.8-MHz CMOS switched-opamp SC filter with rail-to-rail output swing,” IEEE J. Solid-State Circuits, vol. 32, pp. 1979-1986, Dec. 1997.
[4] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipelined analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, pp. 599-606, May. 1999.
[5] J. Crols, and M. Steyaert, “Switched-opamp: an approach to realize full CMOS switched-capacitor circuits at very low power supply voltages,” IEEE J. Solid-State Circuits, vol. 29, pp. 936-942, Aug. 1994.
[6] V. S. L. Cheung, H. C. Luong, and W. H. Ki, “A 1-V switched-opamp switched capacitor pseudo-2-path filter,” IEEE J. Solid-State Circuits, vol. 36, pp. 14-22, Jan. 2001.
[7] V. Cheung, H. Luong and W. Ki, "A 1-V 10.7-MHz switched-opamp bandpass ΣΔ modulator using double-sampling finite-gain-compensation techniques", IEEE J. Solid-State Circuits, vol. SC-37, pp. 1215-1225, October 2002.
[8] M. Waltari, K. A. I. Halonen, “1-V 9-bit pipelined switched-opamp ADC,” IEEE J. Solid-State Circuits, vol. 36, pp. 129-134, Jan. 2001.
[9] B. Vaz, J. Goes, and A. Paulino, “1.5-V 10-b 50 MS/s time-interleaved switched-opamp pipeline CMOS ADC with high energy efficiency,” in Proc. 2004 Symp. VLSI Circuits, June 2004, pp. 432-435.
[10] H. H. Ou and B. D. Liu, “A 1-V, 9-bit, 2.5-Msample/s pipelined ADC with merged switched-opamp and opamp-sharing techniques,” in Proc. IEEE Int. Symp. Circuits Syst., Kobe, Japan, May 2005, pp. 1972-1975.
[11] R. Wang, K. Martin, D. Johns, and G. Burra, “A 3.3 mW 12 MS/s 10 bit pipelined ADC in 90 nm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, 2005, pp. 278–279.
[12] H. C. Kim, D. K. Jeong, and W. Kim, “A 30 mW 8 bit 200 MS/s pipelined CMOS ADC using a switched-opamp technique,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, 2005, pp. 284–285.
[13] P. C. Yu and H. S. Lee, “A 2.5-V, 12-b, 5-MSample/s pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 31, pp. 1854-1861, Dec. 1996.
[14] K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis, and R. G. Renninger, “A 250-mW, 8-b, 52-Msample/s parallel-pipelined A/D converter with reduced number of amplifiers,” IEEE J. Solid-State Circuits, vol. 32, pp. 312-320, Mar. 1997.
[15] B. M. Min, P. Kim, F. W. Bowman, D. M. Boisvert, and A. J. Aude, “A 69-mW 10-bit 80-MSample/s pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 38, pp. 2031-2039, Dec. 2003.
[16] S. W. Kao, “Low voltage (1.5V) 8-bit 50-MS/s analog-to-digital converter on 0.35µm 1P4M CMOS technology,” MS. thesis, National Tsing Hua University, Hsinchu, Taiwan, June 2002.
[17] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley 1997.
[18] T. B. Cho and P. R. Gray, “A 10-b, 20-Msample/s, 35-mW pipeline A/D converter,” IEEE Journal of Solid-State Circuits, vol. 30, no. 3, pp. 166-172, Mar. 1995.
[19] S. Lewis and P. R. Gray, “A pipelined 5MHz 9b ADC,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 1987, pp. 210-211.
[20] H. H. Chang, “The Design and Implementation of Bandwidth ΣΔ Modulators” M.S. thesis, National Taiwan University, Jun. 2001.
[21] Y. Nakagome, H. Tanaka, K. Takeuchi, E. Kume, Y. Watanabe, T. Kaga, Y. Kawamoto, F. Murai, R. Izawa, D. Hisamoto, T. Kisu, T. Nishida, E. Takeda, K. Itoh, “An experimental 1.5-V 64-Mb DRAM,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 465-472, Apr. 1991.
[22] J. Steensgaard, “Bootstrapped low-voltage analog switches,” in Proc. IEEE International Symposium on Circuits and Systems, June 1999, pp. 29-32.
[23] A. Abo, “Design for reliability of low-voltage, switched-capacitor circuits,” Ph.D. dissertation, UC Berkeley, U.S.A., May 1999.
[24] S. H. Lewis and et al., “A 10-b 20Msample/s analog-to-digtal converter”, IEEE J. Solid-state Circuits, vol. 27, pp. 351-358, Mar. 1992.
[25] M. Waltari and K. Halonen, “Fully differential switched opamp with enhanced common mode feedback,” Electronics Letters, vol. 34, no. 23, pp. 2181-2182, Nov. 1998.
[26] R. Castello, F. Montecchi, F. Rezzi, and A. Baschirotto, “Low-voltage analog filters,” IEEE Trans. on Circuits and SystemsⅠ: Fundamental Theory and Applications, vol. 42, no. 11, pp. 827-840, Nov. 1995.
[27] A. Baschirotto and R. Castello, “Low-voltage fully differential switched-opamp bandpass ΣΔ modulator,” IEE Proc. - Circuits, Devices and Systems, vol. 146, no.5, pp. 249-253, Oct. 1999.
[28] G. Chien, “High-speed, low-power, low-voltage, pipelined analog-to-digital converter,” MS. thesis, UC Berkeley, U.S.A., May 1996.
[29] B. Razavi, Design of Analog CMOS Integrated Circuit. New York: McGraw-Hill, 2001.
[30] J. F. Lin, “A high speed pipelined A/D converter using modified Time-shifted CMOS technique” M.S. thesis, National Cheng Kung University, July. 2005.
[31] M. Dessouky and A. Kaiser, “Very Low-Voltage Digital-Audio ΣΔ Modulator with 88-dB Dynamic Range Using Local Switch Bootstrapping,” IEEE J. Solid-State Circuits, Vol. 36, March 2001, pp. 349-355.
[32] M. Dessouky and A. Kaiser, “Input Switch Configuration Suitable for Rail-to-Rail Operation of Switch-Opamp Circuits,” Electron. Lett., Vol. 35, No. 1, 7th, January 1999, pp. 8-10.