| 研究生: |
洪偉倫 Ang, Wee-Lung |
|---|---|
| 論文名稱: |
基於多重雙環戒計數器之高效能的晶片內部測試向量產生方法 Efficient On-Chip Test Generation Scheme Based on Multiple Twisted-Ring Counters |
| 指導教授: |
李昆忠
Lee, Kuen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 邏輯内建自我測試 、雙環式計數器 、高效電路測試 |
| 外文關鍵詞: | Logic BIST, Twisted-Ring-Counters, High-Performance Circuit Testing |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙環式計數器(Twisted-Ring Counters,TRCs)被運用在內建式自我測試向量產生器(Test Pattern Generator),僅需較小的電路面積與簡單的控制就可對高效電路進行測試向量產生,且不會在待測電路的關鍵路徑(Critical path)上增加額外的邏輯閘,因此對效能的影響可以被忽略。但由於單雙環式計數器(Single TRC)常需要較長的測試時間和大量的測試資料量以達到100%的故障覆蓋率(Fault Coverage)。在這篇論文,一個新的基於多重雙環式計數器(Multiple TRC)的測試向量產生方法被提出來用以降低所需要的測試時間和所需要的測試資料量。其概念上是指將待測電路上的掃描路徑(Scan Path)分割成多個相同長度的多重掃描區段(multiple scan segments),每個區段(segments)都加上的TRC設計去做自我測試向量產生。為了降低所需要的測試資料量,我們也發展出有效的演算法對不同的待測電路(Circuit Under Test)去決定出所需要的測試資料以及控制訊號。實驗結果顯示,使用我們的方法只需要增加少量的控制電路就可以大幅減少所需要的測試資料量。以ISCAS’89、ITC’99和IWLS’05的標準電路為例,使用我們提出的方法與過去的方法比較,在單雙環式計數器(Single TRC)的情形下,我們的方法僅需儲存少量的測試資料就可以大幅減少所需要的測試時間,其減少幅度在49.72 - 98.22%間。另外,同樣使用我們方法在多重雙環式計數器(Multiple TRC)的情形之下,只需比單雙環式計數器情形下增加少量的測試資料就可以更進一步大幅降低高達86.49 - 99.44%的測試時間。在大型電路中,我們的方法僅需0.11% - 1.55%的電路面積(Area Overhead)。
Twisted-ring-counters (TRCs) have been used as built-in test pattern generators for high-performance circuits due to their small area overhead, low performance impact and simple control. However previous work based on a single TRC often requires long test time and may require large storage data volume for complete testing. In this thesis a novel multiple-TRC based on-chip test generation scheme is proposed to minimize both the required test application time and the total number of required seeds. The scan path of a circuit under test is divided into multiple equal-length scan segments, each equipped with a small-size TRC design together with a reconfigurable control logic unit for concurrent test generation. An efficient algorithm to determine the required seeds and the control vectors is developed. Experimental results on ISCAS’89, ITC’99 and IWLS’05 benchmark circuits show that on average the proposed scheme using only one TRC design can achieve 49.72-98.22% reductions on the number of test application cycles with much smaller storage data volume compared with previous work. When using more TRC designs, 86.49-99.44% reductions can be achieved with only slight increase on test data volume. Also the proposed scheme requires only 0.11-1.55% area overhead for large circuits.
[1] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for Testability, Morgan Kaufmann, 2006.
[2] B. Koenemann, “LFSR-coded test pattern for scan designs,” in Proc. of European Test Conf., 1991, pp. 237-242.
[3] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman and B. Courtois, "Built-in test for circuits with scan based on reseeding of multiple-polynomial linear feedback shift registers," IEEE Trans. on Computers, Vol. 44, No. 2, pp. 223-233, Feb. 1995.
[4] H.-S. Kim, Y. Kim and S. Kang, “Test-decompression mechanism using a variable-length multiple-polynomial LFSR,” IEEE Trans. on Very Large Scale Integr. Syst., Vol. 11, No. 4, pp. 687-690, Aug. 2003.
[5] Z. Wang, K. Chakrabarty and S. Wang, "Integrated LFSR reseeding, test-access optimization, and test scheduling for core-based system-on-chip," IEEE Trans. on Computer Aided Design of Integr. Circuits and Syst., Vol. 28, No. 8, pp. 1251-1264, Aug. 2009.
[6] H. J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” in Proc. of Int’l Conf. on Computer-Aided Design, 1996, pp. 337-343.
[7] G. Kiefer and H. J. Wunderlich, “Using BIST Control for Pattern Generation,” in Proc. of Int’l Test Conf., 1997, pp. 347-355.
[8] N. A. Touba and E. J. McCluskey, "Bit-fixing in pseudorandom sequences for scan BIST," IEEE Trans. on Computer Aided Design of Integr. Circuits and Syst., Vol. 20, No. 4, pp. 545-555, April 2001.
[9] A. A. Al-Yamani and E. J. McCluskey, “Built-in reseeding for serial BIST,” in Proc. of VLSI Test Symp., 2003, pp.63-68.
[10] V. Gherman, H. J. Wunderlich, H. Vranken, F. Hapke, M. Wittke and M. Garbers, "Efficient pattern mapping for deterministic logic BIST," in Proc. of Int'l Test Conf., 2004, pp. 48-56.
[11] M. Koutsoupia, E. Kalligeros, X. Kavousianos and D. Nikolos, “LFSR-based test-data compression with self-stoppable seeds,” in Proc. of Design, Automation and Test in Europe, 2009, pp. 1482-1487.
[12] A. A. Al-Yamani and E. J. McCluskey. “Seed encoding with LFSRs and cellular automata,” in Proc. of Design Automation Conf., 2003, pp. 560-565.
[13] L. Li and K. Chakrabarty, "Test set embedding for deterministic BIST using a reconfigurable interconnection network." IEEE Trans. on Computer Aided Design of Integr. Circuits and Syst., Vol. 23, No. 9, 1289-1305, Sep. 2004.
[14] H.-S. Kim and S. Kang, "Increasing encoding efficiency of LFSR reseeding-based test compression," IEEE Trans. on Computer Aided Design of Integr. Circuits and Syst., Vol. 25, No. 5, pp.913-917, May 2006.
[15] A. W. Hakmi, H. J. Wunderlich, C. G. Zoellin, A. Glowatz, F. Hapke, J. Schloeffel and L. Souef, “Programmable deterministic Built-In Self-Test,” in Proc. of Int'l Test Conf., 2007, pp.1-9.
[16] V. Tenentes, X. Kavousianos and E. Kalligeros, "Single and variable-state-skip LFSRs: bridging the gap between test data compression and test set embedding for IP cores," IEEE Trans. on Computer Aided Design of Integr. Circuits and Syst., Vol. 29, No. 10, pp. 1640-1644, Oct. 2010.
[17] E. Kalligeros, D. Bakalis, X. Kavousianos and D. Nikolos, "Reseeding-based test set embedding with reduced test sequences," in Proc. of Int’l Symp. on Quality Electronic Design, 2005, pp. 226-231.
[18] E. Kalligeros, X. Kavousianos, D. Bakalis and D. Nikolos, “On-the-Fly reseeding: a new reseeding technique for test-per-clock BIST,” Journal of Electronic Testing-Theory & Applications, Vol. 18, No. 3, pp. 315-332, 2002.
[19] N. A. Touba, "Circular BIST with state skipping." IEEE Trans. on Very Large Scale Integr. Syst., Vol. 10, No. 5, pp. 668-672, Oct. 2002.
[20] C. Fagot, O. Gascuel, P. Girard and C. Landrault, “A Ring architecture strategy for BIST test pattern generation,” Journal of Electronic Testing-Theory & Applications, Vol. 19, No. 3, pp. 223-231, 2003.
[21] Y. Si and Z. Zhang, "Multiple test set generation method for LFSR-based BIST," in Proc. of Asia and South Pacific Design Automation Conf., 2003, pp. 863-868.
[22] W.-C. Lien and K.-J. Lee, “A complete logic BIST technology with no storage requirement,” in Proc. of Asia Test Symp., 2010, pp. 129-134.
[23] K. Chakrabarty, B. T. Murray and V. Iyengar, "Built-in test generation for high-performance circuits using twisted-ring counters," in Proc. of VLSI Test Symp., pp. 22-27, 1999.
[24] K. Chakrabarty, B. T. Murray and V. Iyengar, "Deterministic built-in test pattern generation for high-performance circuits using twisted-ring counters," IEEE Trans. on Very Large Scale Integr. Syst., Vol. 8, No. 5, pp. 633-636, 2000.
[25] K. Chakrabarty and S. Swaminathan, "Built-In self testing of high-performance circuits using twisted-ring counters," in Proc. of Int’l Symp. On Circuit and Syst., 2000, pp. 72-75.
[26] S. Swaminathan and K. Chakrabarty, "On using twisted-ring counters for test set embedding in BIST," Journal of Electronic Testing-Theory & Applications, Vol. 17, No. 6, pp. 529-542, 2001.
[27] B. Zhou, Y.-Z. Ye and Y.-S. Wang, "Simultaneous reduction in test data volume and test time for TRC-reseeding," in Proc. of Great Lakes Symp. on VLSI, 2007, pp.49-54.
[28] S. Hellebrand, H.-G. Liang and H.-J. Wunderlicht, “A mixed mode BIST scheme based on reseeding of folding counters,” Journal of Electronic Testing-Theory & Applications, Vol. 17, No. 3-4, pp. 341-349, 2001.
[29] H. Liang, M. Yi, X. Fang and C. Jiang, "A BIST scheme based on selecting state generation of folding counters." in Proc. of Asia Test Symp., 2005, pp. 144-149.
[30] IWLS’05 Benchmarks, http://iwls.org/iwls2005/benchmarks.html.
[31] SynTest Technologies, http://www.syntest.com
校內:2017-09-14公開