| 研究生: |
陳建廷 Chen, Chien-Ting |
|---|---|
| 論文名稱: |
使用三乙醇胺作為錯合劑電沉積二硒化銅鋁、銅銦鋁硒薄膜之研究 Study of electrodeposition of CuAlSe2 and Cu(In,Al)Se2 thin films with triethanolamine as the complexing agent |
| 指導教授: |
黃守仁
Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 二硒化銅鋁 、銅銦鋁硒 、電沉積 、鍛燒 、吸收係數 |
| 外文關鍵詞: | CuAlSe2, Cu(In,Al)Se2, electrodeposition, annealing, absorption coefficient. |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以電沉積方式,在含氯化物的水溶液中添加三乙醇胺(Triethanolamine,TEA)作為錯合劑,將二硒化銅鋁 (CuAlSe2,CAS)、以及銅銦鋁硒 (Cu(In,Al)Se2,CIAS)電沉積於ITO玻璃基板上。實驗變因包含:各個離子組成濃度、鍛燒溫度與時間、TEA濃度、電沉積電位、電沉積時間,其中鍍製二硒化銅鋁薄膜最佳條件為 5mM CuCl2 +30 mM AlCl3 + 22 mM SeO2 + 0.2 M TEA,在pH=2.50下鍛燒300 °C/1.0 hr。
不同沉積電位會影響實驗的電流密度、粒徑大小、膜厚、能隙。薄膜的晶格結構、組成比例、表面形貌,分別利用X光粉末繞射儀、能量分散式光譜儀、掃描式電子顯微鏡來進行分析。在X光粉末繞射儀分析上,薄膜特徵峰值強度會隨上述變因而有些微不同,而從能量分散式光譜儀發現薄膜中Se原子比例的偏低會導致利用公式計算出來的能隙有降低的趨勢。
薄膜的光學性質上,利用紫外光/可見光/近紅外光光譜儀來進行分析,利用測量穿透度、折射度然後經過公式計算出來的吸收係數也不相同。整體上薄膜吸收係數皆達到104 cm-1,表示薄膜具很強的吸收太陽光的特性是良好的吸收材料。
In our experiments, CAS and CIAS were deposited on ITO glass from chloride electrolytes by the method of co-electrodeposition. The parameters include: individual ion concentration, annealing temperature and annealing time, TEA concentration, deposition potential and deposition time. Among all conditions, the optimum condition was 5 mM CuCl2 + 30 mM AlCl3 + 22 mM SeO2 + 0.2 M TEA deposited at pH 2.50 and then under annealing at 300 °C for 1.0 hr.
Current density, particle size, thickness and band gap were found to be affected by the deposition potential. The crystal structure, compositions and morphologies of the deposited thin films were determined by X-ray powder diffractometer, energy dispersive spectrometer and scanning electron microscope, respectively. X-ray diffraction patterns revealed the peak intensities of the deposits were altered when the parameters mentioned above changed. From the analysis of EDS, the atomic ratios of Se in the films of deposits were discovered lower than the stoichiometric ratio. This phenomenon would narrow down the band gap, which can be calculated from formulas.
To investigate the optical properties, transmittance and reflectance of the films could be examined by UV-VIS-NIR-Spectrophotometer, and it would cause different absorption coefficients which were calculated from formulas. Overall, the absorption coefficient of the deposited films was as high as 104 cm-1, demonstrates that the films are potential absorbing materials because it possesses strong sunlight-absorbing characteristics.
1.李雯雯, 薄膜太陽能電池發展趨勢分析, 工研院IEK, 2008.
2.M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem, 2005, 44, 6841-6851.
3.半導體. (2014, March 29). Retrieved July 6, 2014, from http://zh.wikipedia.org/zh-tw/半導體
4.L. Kaupmees, M. Altosaar, O. Volubujeva, E. Mellikov, Study of composition reproducibility of electrochemically co-deposited CuInSe2 films onto ITO, Thin Solid Films. 2007, 515, 5891-5894.
5.Y. Oda, M. Matsubayashi, T. Minemoto, H. Takakura, Fabrication of Cu(In, Ga)Se2 thin film solar cell absorbers from electrodeposited bilayers, Current Applied Physics. 2010, 10, S146-S149.
6.K. Otte, L. Makhova, A. Braun, I. Konovalov, Flexible Cu(In,Ga)Se2 thin-film solar cells for space application, Thin Solid Films. 2006, 511/512, 613-622.
7.G. M. Hanket, U. P. Singh, E. Eser, W. N. Shafarman, R. W. Birkmire, Pilot-scale manufacture of Cu(lnGa)Se2 films on a flexible polymer substrate, Photovoltaic Specialists Conference. Proceedings of the 29th IEEE, 2002, 567-570
8.曾衍彰, 太陽能原理與材料技術, 經濟部工業局, 2004, 63-183.
9.太陽光. (2014, May 16). Retrieved July 6, 2014, from http://zh.wikipedia.org/zh-tw/太陽光
10.楊素華, 蔡泰成, 太陽光能發電元件, 科學發展月刊, 2005, 49-55.
11.光生伏打效應. (2014, February 10). Retrieved July 6, 2014, from http://zh.wikipedia.org/wiki/光生伏特效應
12.Theory of solar cells. (2014, June 27). Retrieved July 6, 2014, from http://en.wikipedia.org/wiki/Theory_of_solar_cells
13.太陽能電池. (2014, July 4). Retrieved July 6, 2014, from http://zh.wikipedia.org/zh-tw/太陽能電池
14.P. G. L. Comber, W. E. Spear, Substitutional doping of amorphous silicon, Solid State Communications, 1975, 17, 1193-1196.
15.J. K. Rath, Low temperature polycrystalline silicon:a review on deposition, physical properties and solar cell applications, Solar Energy Materials and Solar Cells, 2003, 76, 431-487.
16.K. L. Chopra, P. D. Paulson, V. Dutta, Thin-film solar cells: an overview, Progress in Photovoltaics, 2004, 12, 69-92.
17.I. Chung, B. Lee, J, He, R. P. H. Chang, M. G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency, Nature, 2012, 485, 486-490.
18.T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, S. Niki, Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs, Solar Energy Materials and Solar Cells, 2011, 95, 163-166.
19.J. Zhao, J. Chen, Z. C. Feng, J. L. Chen, R. Liu, G. Xu, Band gap blue shift of InGaAs/InP multiple quantum wells by different dielectric film coating and annealing, Thin Solid Films, 2006, 498, 179-182.
20.K. Murata, K. Sano, H. Fukuyama, T. Kosugi, M. Nakamura, H. Sugahara, M. Tokumitsu, T. Enoki, InP-based IC technologies, Thin Solid Films, 2007, 515, 4313-4320.
21.C. W. Ng, H. Wang, Profiling the hot carrier induced damage in InP/InGaAs/InP double heterojunction bipolar transistors by using a current transient technique, Thin Solid Films, 2007, 515, 4390-4392.
22.X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells, Solar Energy, 2004, 77, 803-814.
23.江志宏.薄膜太陽能電池. Retrieved July 6, 2014, from http://www.kson.com.tw/chinese/study_23-8.htm
24.Q. Huang, K. Reuter, S. Amhed, L. Deligianni, L. T. Romankiw, S. Jaime, P. P. Grand, V. Charrier, Electrodeposition of indium on copper for CIS and CIGS solar cell applications, J. Electrochem, Soc, 2011, 158, D57-D61.
25.H. Ye, H. S. Park, V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, B. A. Korgel, A. J. Bard, Photoelectrochemical characterization of CuInSe2 and Cu(In1-xGax)Se2 thin films for solar cells, J. Phys. Chem. C, 2011, 115, 234-240.
26.S. Marsillac, T. B. Wahiba, C. E. Moctar, J. C. Bernede, A. Khelil, Evolution of the properties of CuAlSe2 thin films with the oxygen content, Solar Energy Materials and Solar Cells, 2002, 71, 425-434.
27.Y. B. K. Reddy, V. S. Raja, Effect of Cu/Al ratio on the properties of CuAlSe2 thin films prepared by co-evaporation, Materials Chemistry and Physics, 2006, 100, 152-157.
28.L. Barkat, M. Morsli, C. Amory, S. Marsillac, A. Khelil, J. C. Bernede, C. E. Moctar, Study on the fabrication of n-type CuAlSe2 thin films, Thin Solid Films, 2003, 431/432, 99-104.
29.R. S. Kumar, A. Sekar, N. V. Jaya, S. Natarajan, S. Chichibu, Structural studies of CuAlSe2 and CuAlS2 chalcopyrites at high pressures, Journal of Alloys and Compounds, 2000, 312, 4-8.
30.N. Kuroishi, K. Mochizuki, K. Kimoto, Surface oxidation of CVT-grown CuAlSe2, Materials Letters, 2003, 57, 1949-1954.
31.S. Shirakata, S. Chichibu, H. Miyake, K. Sugiyama, Optical properties of CuGaSe2 and CuAlSe2 layers epitaxially grown on Cu(In0.04Ga0.96)Se2 substrates, Journal of Applied Physics, 2000, 87, 7294-7302.
32.L. Zhou, S. Wu, J. Yu, Study on the thin films of Cu(In1−x,Alx) Se2 prepared by selenization process, Surface & Coatings Technology, 2013, 228, S214-S218
33.J. Singh, D. Prasher, K. Nigam, P. Rajaram, Growth and characterization of pulse electrodeposited CuAlSe2 thin films, AIP Conference Proceedings, 2013, 1536, 473-474.
34.K. C. Huang, C. L. Liu, P. K. Hung, M. P. Houng, Effect of [Al] and [In] molar ratio in solutions on the growth and microstructure of electrodeposition Cu(In,Al)Se2 films, Applied Surface Science, 2013, 273, 723-729.
35.K. G. Deepa, N. L. Shruthi, M. A. Sunil, J. Nagaraju, Cu(In,Al)Se2 thin films by one-step electrodeposition for photovoltaics, Thin Solid Films, 2014, 551, 1-7.
36.K. C. Huang, C. L. Liu, P. K. Hung, M. P. Houng, Cyclic voltammetric study and nucleation of electrodeposited Cu(In,Al)Se2 thin films with sodium dodecyl sulfate additive, Journal of The Electrochemical Society, 2013, 160, D125-D131.
37.D. Prasher, P. Rajaram, Growth and characterization of electrodeposited Cu(In,Al)Se2 thin films, Thin Solid Films, 2011, 519, 6252-6257.
38.R. N. Bhattacharya, A. M. Fernandez, CuIn1-xGaxSe2-based photovoltaic cells from electrodeposited precursor films, Solar Energy Materials and Solar Cells, 2003, 76, 331-337.
39.江志宏.聚光型太陽能電池. Retrieved July 6, 2014, from http://www.kson.com.tw/chinese/study_23-6.htm
40.高雅君, 錯合劑對電沉積二硒化銅銦薄膜的影響研究, 國立成功大學化學系碩士論文, 2008.
41.胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司, 2002.
42.Cyclic voltammetry. (2014, June 6). Retrieved July 6, 2014, from http://en.wikipedia.org/wiki/Cyclic_voltammetry
43.Cottrell equation. (2014, June 18). Retrieved July 6, 2014, from http://en.wikipedia.org/wiki/Cottrell_equation
44.楊曉菁, In situ STM of sulphur dioxide and polythiophene on highly ordered Au and Pt(111) electrode, 國立中央大學化學系碩士論文, 2003.
45.Chronoamperometry. (2014, June 18). Retrieved July 6, 2014, from http://en.wikipedia.org/wiki/Chronoamperometry
46.A. W. Bott, Controlled current techniques, Current Separations, 2000, 18:4, 125-127.
47.FABRICATION TECHNIQUES. Retrieved July 6, 2014, from http://wwwold.ece.utep.edu/research/webedl/cdte/Fabrication/index.htm
48.A. R. Barron, (2009, July 13). Chemical Vapor Deposition. Retrieved July 6, 2014, from http://cnx.org/content/m25495/latest/
49.Sputter deposition. (2014, June 1). Retrieved July 6, 2014, from http://en.wikipedia.org/wiki/Sputter_deposition
50.R. Musembi, B. Aduda, J. Mwabora, M. Rusu, K. Fostiropoulos, L. S. Martha, Effect of recombination on series resistance in eta solar cell modified with In(OH)xSy buffer layer, International Journal of Energy Engineering, 2003, 3, 183-189.
51.A. Saynatjoki, Atomic-layer-deposited thin films for silicon nanophotonics, Nanotechnology, 2012.
52.Nernst equation. (2014, June 19). Retrieved July 6, 2014, from http://en.wikipedia.org/wiki/Nernst_equation
53.N. Takeno, Atlas of Eh-pH diagrams, 2005.
54.Scherrer equation. (2014, March 12). Retrieved July 6, 2014, from http://en.wikipedia.org/wiki/Scherrer_Equation
55.A. A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E. Crossan, F. Placido, An investigation of the surface energy and optical transmittance of copper oxide thin films prepared by reactive magnetron sputtering, Acta Materialia, 2005,53, 5151-5159
56.Triethanolamine. (2014, April 23). Retrieved July 6, 2014, from http://en.wikipedia.org/wiki/Triethanolamine
57.K. Kondo, J. Ishikawa, O. Takenaka, T. Matsubara, Acceleration of electroless copper deposition in the presence of excess triethanolamine, J. Electrochem. Soc., 1991, 138, 3629-3633.
58.T. J. Whang, M. T. Hsieh, Y. C. Kao, S. J. Lee, A study of electrodeposition of CuInSe2 thin films with triethanolamine as the complexing agent, Applied Surface Science, 2009, 255, 4600-4605.
59.D. Mei, W. Yin, K. Feng, Z. Lin, L. Bai, J. Yao, Y. Wu, LiGaGe2Se6: a new IR nonlinear optical material with low melting point, Inorg. Chem. 2012, 51, 1035−1040.