簡易檢索 / 詳目顯示

研究生: 傅建綸
Fu, Chien-Lun
論文名稱: 多極式轉子切換磁阻馬達設計與分析
Design and Analysis of Switch Reluctance Motor with Higher Number of Rotor Poles than Stator Poles
指導教授: 謝旻甫
Hsieh, Min-Fu
蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 97
中文關鍵詞: 切換式磁阻馬達極靴角設計轉矩漣波有限元素分析
外文關鍵詞: switched reluctance motor, tip design, torque ripple, finite element analysis
相關次數: 點閱:108下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,電動車產業在台灣日益受到重視,政府與企業也積極地推廣電動巴士的普及。由於切換式磁阻馬達其轉子無永久磁鐵,在較惡劣的環境也能夠操作,所以強健性高,因此具有高可靠度與低經濟成本等特性,再加上擁有廣泛的定功率操作區間,故適用於做為大型電動載具的動力源。但是,運轉時高轉矩漣波所產生的高震動噪音與較低的轉矩密度,卻是切換磁阻馬達的主要問題。因此本文以製造成本為考量,維持原本的製造技術為原則,利用多極式轉子為設計概念,建立專屬設計流程圖,並整理出用於定、轉子極弧角設計的可行性梯形法,完成低轉矩漣波的多極式切換磁阻馬達設計。再搭配轉子端部的極靴角設計,使轉矩漣波產生明顯的抑制效果。最後以12/8極切換磁阻馬達為實驗目標,進行各項性能模擬與數據驗證,由結果證實,有限元素法(FEA)的分析結果可符合實際馬達實驗測量的特性。

    In recent years, electric vehicles have received increasing attention from Taiwan. Governments and enterprises are also actively promoting electric bus industry. Owing to a rigid structure and the absence of magnetic source on the rotor, and they are robust in harsh operational conditions and have a wide constant power speed range. Therefore, switched reluctance machine (SRM) is inherently robust and cost effective, which applies to large-scale electric vehicle power sources. However, the high levels of torque ripple, acoustic noise, and relatively low torque density switched reluctance motor but also a big problem. Therefore, this thesis considered with the cost-effective manufacture, so as not to change the principle of manufacturing technique. Base on the design concept of SRM with higher number of rotor poles than stator poles, this thesis established an exclusive design flow chart, and sorted out for the Feasible Trapezoid which is a principle of stator and rotor pole arc angle design. Above method completed the SRM with higher number of rotor poles than stator poles design to reduce the levels of torque ripple. Then with the design concept of the rotor pole tip, the torque ripple produced significant. Finally, the thesis took 12/8 switched reluctance motor as experimental objectives, to verify the performance of simulation results and the experimental data. Finally, the results evidenced that the finite element analysis (FEA) was consistent with the characteristics of the motor experimental measurement.

    中文摘要 I Abstract II 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 符號表 XIX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 7 1.3 研究目的與方法 12 1.4 論文架構 13 第二章 切換磁阻馬達設計 14 2.1 切換磁阻馬達操作原理與介紹 14 2.2 切換式磁阻馬達數學模型 20 2.3 切換式磁阻馬達可行性三角形法 24 2.4 切換式磁阻馬達部分飽和設計 26 2.5 切換式磁阻馬達磁路分析 27 2.6 多極式轉子切換磁阻馬達介紹[65] 35 第三章 12/16多極式轉子切換磁阻馬達設計 37 3.1 12/16多極式轉子切換磁阻馬達設計架構 37 3.2 多極式轉子切換磁阻馬達設計流程 39 3.3 多極式轉子可行性梯型法 40 3.4 12/16多極式切換磁阻馬達設計 44 3.4.1 馬達細部尺寸設計 44 3.4.2 轉子齒長分析 49 3.4.3 等效磁路分析(Equivalent Magnetic Circuit Method, EMCM) 53 3.4.4 對正與非對正位置磁交鏈計算 55 3.4.5 繞線匝數與線徑規格計算 59 3.5 轉子端部極靴角設計 62 第四章 模擬結果與數據量測 64 4.1 12/16多極式切換磁阻馬達模擬結果 64 4.1.1 等效磁路分析與磁交鏈模擬驗證 64 4.1.2 12/16多極式切換磁阻馬達穩態性能分析 65 4.2 轉子端部三角形極靴角設計模擬分析 67 4.2.1 雙邊極靴角設計探討 68 4.2.2 單邊極靴角設計探討 70 4.2.3 單邊極靴角與逆邊圓角設計探討 74 4.3 12/16多極式單邊極靴角轉子SRM特性模擬分析 79 4.3.1 額定轉速下模擬結果分析 79 4.3.2 馬達T-N 曲線與效率曲線模擬結果 81 4.4 12/8切換磁阻馬達模擬結果與實測數據驗證 83 4.4.1 馬達電感曲線測量 85 4.4.2 馬達穩態特性模擬結果與量測驗證 87 第五章 結論與建議 91 4.5 結論 91 4.6 未來研究建議 92 參考文獻 93

    [1]A. Hajihosseinlu, M. Jahanmahin; E. Afjei; S. Tajik, “A novel four layer switch reluctance motor with high torque and ripple reduction,” Power Electronics and Drive Systems Technology (PEDSTC), 2012 3rd , pp.62,67, 15-16 Feb. 2011.
    [2]A. V. Radun, “Design Considerations for the Switched Reluctance Motor,”IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1079-1087, Sept./Oct. 1995.
    [3]B. Bilgin, A. Emadi, and M. Krishnamurthy, “Design considerations for switched reluctance machines with higher number of rotor poles for solar-assisted plug-in electric auto rickshaw,” IEEE Trans. Ind. Elecron., pp.1247-1252, July 2010.
    [4]B. Bilgin, A. Emadi, M. Krishnamurthy, “Design Considerations for Switched Reluctance Machines With a Higher Number of Rotor Poles,” IEEE Trans. Ind. Elecron., Vol. 59, No. 10, pp.3745-3756, October 2012. [4]
    [5]C. Pollock, and M. Brackley, “Comparison of the acoustic noise of a flux-switching and a switched reluctance drive,” IEEE Trans. Ind. Appl., Vol. 39, No. 3, pp. 826-834, May-June 2003.
    [6]C. Pollock, and M. Wallace, “The flux switching motor, a DC motor without magnets or brushes,” Thirty-Fourth IAS Annual Meeting, Vol. 3, pp. 1980-1987, Oct. 1999.
    [7]D. Hanselman, 2012, Brushless Motors: Magnetic Design, Performance, and Control of Brushless DC and Permanent Magnet Synchronous Motors, E-Man Press LLC, ISBN: 978-0-9826926-1-5.
    [8]N. Hashemnia and B. Asaei, “Comparative study of using different electric motors in the electric vehicles,” in Electrical Machines, 2008. ICEM 2008. 18th International Conference on , vol., no., pp.1,5, 6-9 Sept. 2008.
    [9]F.-C. Lin and S.-M. Yang, “An approach to producing controlled radial force in a switched reluctance motor,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2137–2146, Aug. 2007.
    [10]G. E. Horst, “Redundant switched reluctance motor,” U.S. Patent 5 239 217, Aug. 24, 1993.
    [11]G.J. Li, J. Ojeda, E. Hoang, M. Lecrivain, M. Gabsi, “Comparative Studies Between Classical and Mutually Coupled Switched Reluctance Motors Using Thermal-Electromagnetic Analysis for Driving Cycles," IEEE Trans. Magn. , vol.47, no.4, pp.839,847, April 2011.
    [12]H.C. Lovatt, “Analytical model of a classical switched-reluctance motor, ”IEE Proceedings- Electric Power Applications, Vol. 152, No. 2, 4, pp. 352-358, March 2005.
    [13]H. Neudorfer, N. Wicker and A. Binder, “Comparison of three different electric powertrains for the use in hybrid electric vehicles,”Power Electronics, Machines and Drives (PEMD), 2008., pp. 510-514, April 2008.
    [14]International Electrotechnical Commission, “Dimensions and output ratings for rotating electrical machines – Frame numbers 56 to 400 and flange numbers F55 to F1080,” Publication 72, Geneva, Switzerland, 1971.
    [15]J. Sun, Q. Zhan, Sh. Wang, and Zh. Ma, “A novel radiating Rib structure in switched reluctance motors for low acoustic noise,” IEEE Trans. Magn., vol. 43, no. 9, pp. 3630–3637, Sep. 2007.
    [16]J.R. Hendershot, “Short flux loops cool SR motors,”Machine Design, pp.106-111, 1989.
    [17]J.W. Lee, H.S. Kim, B.I. Kwon, and B.T. Kim, “New rotor shape design for minimum torque ripple of SRM using FEM,” IEEE Trans. Magn., vol.40, No. 2, pp.754-757, March 2004.
    [18]K. M. Rahman and S. E. Schulz, “Design of high-efficiency and hightorque-density switched reluctance motor for vehicle propulsion,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1500–1507, Nov./Dec 2002.
    [19]K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of Switched Reluctance Motor Applications to EV and HEV: Design and Control Issues,’’ IEEE Trans. Ind. Appl., Vol. 36, pp. 111-121, 2000.
    [20]P. C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Elecron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
    [21]P. N.Materu and R. Krishnan, “Steady-state analysis of the variable-speed switched-reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 36, no. 4, pp. 523–529, Nov. 1989.
    [22]R. Krishnan, “SWITCHED RELUCTANCE MOTOR DRIVES,”CRC Press, Boca Raton, 2001.
    [23]R. Madhavan and B.G. Fernandes, “Axial flux segmented SRM with a higher number of rotor segments for electric vehicles,” IEEE Trans. Energy Convers., vol. 28, no. 1, pp. 203–213, Mar. 2013.
    [24]R. Madhavan, B.G. Fernandes, “A novel technique for minimizing torque ripple in axial flux segmented rotor SRM,” Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, pp.3383,3390, 17-22 Sept. 2011.
    [25]Shuanghong Wang, Qionghua Zhan, Zhiyuan Ma, and Libing Zhou ,” Implementation of a 50-kW Four-Phase Switched Reluctance Motor Drive System for Hybrid Electric Vehicle”, IEEE Trans on Magn., Vol. 41, No. 1, pp501-504, January 2005.
    [26]T. J. E. Miller, “Electronic Control of Switched Reluctance Machine.” Oxford, U.K.: Newnes, 2001.
    [27]T.J.E. Miller and M. McGilp, “Nonlinear theory of the switched reluctance motor for rapid computer-aided design,” Electric Power Applications, IEE Proceedings B , vol.137, no.6, pp.337-347, Nov 1990.
    [28]T.J.E. Miller, "Brushless Permanent-Magnet and Reluctance Motor Drives," Oxford University Press, New York, 1993.
    [29]T.J.E. Miller, "Switched Reluctance Motors and Their Control, " Magna Physics, Ohio and Oxford University Press, New York, 1993. **[22][20]
    [30]Y. K. Choi; H. S. Yoon; C. Koh, "Pole-Shape Optimization of a Switched-Reluctance Motor for Torque Ripple Reduction," IEEE Trans. Magn., vol.43, no.4, pp.1797,1800, April 2007.
    [31]台灣國際電動車展 http://www.evtaiwan.com.tw
    [32]台灣電動車產業聚落交流平台http://www.ev.org.tw/Home/index
    [33]經濟部智慧電動車先導運行計畫 http://www.lev.org.tw/iev/index_C.aspx
    [34]摩特動力工業股份有限公司http://pgoscooter.net/EBUBU.shtml
    [35]石育賢、陳志祥,"2014汽機車產業年鑑",財團法人工業技術研究院產業經濟與趨勢研究中心,民國103年5月。
    [36]吳建華,“開關磁阻電動機設計與應用”,機械工業出版,民國89年。
    [37]油價走勢研析小組,"2015年6月國際油價走勢概況分析與前瞻",台灣法人綜合研究院,民國104年6月。
    [38]茆尚勳,“新型切換式磁阻與同心式永磁馬達之設計與實現”,博士論文,國立成功大學機械系,民國94年。
    [39]梁啟源、尹啟銘,"我國電動車產業發展",中技社,民國103年12月。
    [40]郭明珠,“類神經網路於切換式磁阻馬達轉矩漣坡控制之應用”,碩士論文,國立中央大學電機工程學系,民國89年。
    [41] 陳航生,“內藏式永磁同步馬達之特性分析及其電動機車之應用”,碩士論文,國立成功大學機械系,民國93年。
    [42]黃柏維,“自起動式永磁馬達特性研究”,碩士論文,國立成功大學機械系,民國97年。
    [43]經濟能源農業處, ” 智慧電動車發展策略與措施”,行政院經濟部,民國103年7月。
    [44]經濟部工業局,“智慧電動車輛發展策略與行動方案”,專案計畫執行進度報告,經濟部,民國104年4月。
    [45]賴益志,“無刷直流馬達之磁路特性分析”,碩士論文,國立成功大學機械工程學系,民國89年。
    [46]蘇冠瑋,“切換式磁阻馬達動態電流控制器設計與實現”,碩士論文,國立成功大學電機系,民國101年。

    無法下載圖示 校內:2020-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE