| 研究生: |
林韋德 Lin, Wei-Te |
|---|---|
| 論文名稱: |
應用於電流汲取式數位類比轉換器之動態性能提升技術 Dynamic-Performance-Improved Techniques for Nyquist-Rate Current-Steering DACs |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 數位類比轉換器 、電流汲取式 、二元權重 、高速 、高解析 、尼奎式 、無失真動態範圍 、三階互調失真 、精簡面積 、動態元件匹配 、歸零 、數位歸零 、性能評比 、隨機旋轉二元選擇 、動態元件匹配結合數位歸零 、誤差免疫 |
| 外文關鍵詞: | DAC, current-steering, binary-weighted, high-speed, high-resolution, Nyquist rate, SFDR, IM3, compact size, DEM, RTZ, DRZ, FoM, RRBS, DEMDRZ, mismatch insensitivity |
| 相關次數: | 點閱:200 下載:40 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電流汲取式數位類比轉換器(DAC)廣泛使用於高速應用。在此論文中,多項適用於Nyquist-rate電流汲取式DAC的動態性能提升技術被提出。
針對低成本DAC設計,我們提出一個名為”隨機旋轉二元選擇(RRBS)”以實現動態元件匹配(DEM)技術。RRBS具有像二元權重編碼架構(binary-weight)一樣的精簡電路,卻能大量的降低電流源不匹配效應。相較於傳統二元權重編碼架構,RRBS具較佳的電流源切換特性,隨機選擇本質上即降低了Nyquist輸出頻率的突波發生。雖然RRBS的電流源切換量較溫度計編碼增加些許,但其不採用溫度計編碼電路將節省更多的晶片面積。我們以0.18微米1.8V CMOS製程實現一個10位元採用RRBS技術的DAC,主動面積僅為0.034平方毫米。量測結果顯示,在500MS/s取樣下,整個Nyquist頻寬(<250MHz)皆可達到 >61dB 無失真動態範圍(SFDR),而其主動面積小於世界一流文獻中所載錄的10%。其SFDR性能甚至可比擬12位元DAC。以三個常見的性能指標(FoM)評比我們所提出的RRBS DAC及發表於世界一流文獻之10~12位元DAC。我們在其中兩項FoM中得到最佳評比。
針對高解析DAC設計,我們提出了新穎的佈局方式,名為”一線到底(OLR)”,結合DEM技術十分適合用來降低電路成本。我們所提出的OLR方法,相較於多數己發表技術而言具有低複雜度、較短繞線距離、較小寄生電容等特色,並具有極佳的梯度誤差補償能力。我們以0.18微米1.8V CMOS製程實現一個14位元採用OLR+RRBS方法的DAC。量測結果顯示,在300MS/s取樣下,低頻輸出下可得到>80dB SFDR,Nyquist頻率輸出下可得到>70dB SFDR。晶片的主動面積僅0.18平方毫米,小於多數一流文獻所提出的DAC。
針對高速DAC設計,我們提出一個結合DEM與數位歸零技術(DRZ)的創新架構(DEMDRZ),以同時解決電流源誤差及切換突波造成的非線性。因此,本設計採用小面積電流源與電流開關並不會受到電流誤差影響,相反地,更能提升高頻輸出訊號的SFDR性能。我們採用DEMDRZ技術,我們以40奈米 CMOS製程實現一個12位元操作於1.6 GS/s的DAC。量測結果顯示,在1.6 GS/s取樣下,整個Nyquist頻寬(<800MHz)皆可達到>70dB SFDR,而在2.8GS/s取樣下,皆可達到< -61dB的三階交互調變失真(IM3)。可分別滿足訊號產生儀器(signal generation instrumentation)及多載波頻率通訊系統(multi-carrier communication system)不斷提升的應用需求。再者,在單電源1.2V下僅消耗40毫瓦。晶片主動面積僅0.016平方毫米,小於一流文獻DAC所需面積的5%。據我們所知,我們以DEMDRZ所實現的DAC實現出全球最佳的性能指標。
Current-Steering Digital-to-Analog Converters (DACs) are widely used in high–speed applications. In this dissertation, several dynamic-performance-improved techniques for Nyquist-rate current-steering DACs are presented.
For low-cost DAC designs, a DEM method, random rotation-based binary-weighted selection (RRBS), is proposed which offers the circuit simplicity that using binary- weighted coding and greatly reduces the mismatch effect. Compared with the conventional binary-weighted architecture, the switching activity of RRBS is improved and the glitch energy issues are inherently reduced by randomization. Although its switching activity is not near-minimum, the binary-to-thermometer decoder is not required, thereby further saving chip area. A 10-bit RRBS DAC is implemented with only 0.034 mm2 in a 0.18μm CMOS process. Measured performance achieves >61 dB spurious-free dynamic range (SFDR) in the Nyquist bandwidth with 500 MS/s, while its active area is less than one-tenth of that required by state-of-the-art 10-bit current steering DACs. Its SFDR is also comparable to that of 12-bit published designs. Three popular figures-of-merit (FoMs) are used to compare this design with other state-of-the-art 10~12-bit DACs, with the proposed design performing best with 2 FoMs.
For high-resolution DACs, A novel layout pattern, i.e., one-line-routing (OLR), incorporating with DEM method for low-cost current-steering DACs is proposed. The proposed OLR method exhibits good gradient error compensation with low complexity and small metal routing overhead compared with most published methods, and induces less parasitic capacitance. With the proposed OLR incorporating with DEM, a 14-bit current-steering DAC is implemented in a 0.18μm CMOS process. The measured SFDR exceeds 80 dB at low output frequency and maintains 70 dB at near Nyquist output frequency clocked at 300 MS/s. The DAC has an active area of less than 0.18 mm2, which achieves a smaller active area than most of the state-of-the-art 14-bit DACs.
For high-speed, high-resolution DACs, a technique utilizing dynamic-element- matching and digital return-to-zero, called DEMDRZ, is proposed to simultaneously suppress the mismatch- and transient-induced nonlinearity. In doing so, the usage of small-sized current sources and switches is possible, and the spurious-free dynamic range (SFDR) and third-order intermodulation distortion (IM3) for high signal frequencies can be improved. A 12-bit compact, low-power, high-speed, DAC is implemented in TSMC 40nm CMOS process. The implemented DAC achieves >70 dB SFDR for signals over the 800 MHz Nyquist bandwidth at 1.6 GS/s and < -61 dB IM3 for signals over the 1.4 GHz Nyquist bandwidth at 2.8 GS/s. Further, it dissipates 40 mW with a single 1.2 V supply. The active area of the DAC is 0.016 mm2, which is less than 6% of other state-of-the-art 12-bit current steering DACs. Furthermore, the implemented DAC performs best with three common figure-of-merits (FoMs).
[1] Y. Tang, H. Hegt, and A. van Roermund, “Dynamic-Mismatch Mapping for Digitally-Assisted DACs,” Springer, New York, 2013
[2] A. van den Bosch, M. Borremans, M. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 315–324, Mar. 2001.
[3] J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 12-bit Intrinsic Accuracy High-Speed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1959–1969, Dec. 1998.
[4] P. Palmers and M. S. J. Steyaert, “A 10-bit 1.6-GS/s 27-mW Current-Steering D/A Converter With 550-MHz 54-dB SFDR Bandwidth In 130-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 11, pp. 2870–2879, Nov. 2010.
[5] C.-H. Lin, F. M. L. van der Goes, J. R. Westra, J. Mulder, Y. Lin, E. Arslan, E. Ayranci, X. Liu, and K. Bult, “A 12 bit 2.9 GS/s DAC With IM3 60 dBc Beyond 1 GHz In 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3285–3293, Dec. 2009.
[6] W.-H. Tseng, C.-W. Fan, and J.-T. Wu, “A 12-Bit 1.25-GS/s DAC in 90nm CMOS With >70 dB SFDR up to 500MHz,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2845-2856, Dec. 2011..
[7] A. R. Bugeja and B.-S. Song, “A Self-Trimming 14-b 100-MS/s CMOS DAC,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1841–1852, Dec. 2000.
[8] M. P. Tiilikainen, “A 14-bit 1.8-V 20-mW 1-mm CMOS DAC,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1144–1147, Jul. 2001.
[9] D.-L. Shen, Y.-C. Lai, and T.-C. Lee, “A 10-bit Binary-Weighted DAC with Digital Background LMS Calibration,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2007, pp. 352–355.
[10] J.-H. Chi, S.-H. Chu, and T.-H. Tsai, “A 1.8-V 12-bit 250 MS/s 25-mW Self- Calibrated DAC,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2010, pp. 222–225.
[11] D.-H. Lee and T.-H. Kuo, “Randomized Thermometer-Coding Digital-To-Analog Converter and Method Therefor,” U.S. patent 7,679,539, Mar. 16, 2010.
[12] D.-H. Lee, T.-H. Kuo, and K.-L. Wen, “Low-Cost 14-bit Current-Steering DAC With a Randomized Thermometer-Coding Method,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 137–141, Feb. 2009.
[13] D.-H. Lee, Y.-H. Lin, and T.-H. Kuo, “Nyquist-Rate Current-Steering Digital- to-Analog Converters With Random Multiple Data-Weighted Averaging Technique and QN Rotated Walk Switching Scheme,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1264–1268, Nov. 2006.
[14] T. Chen and G. G. E. Gielen, “The Analysis and Improvement of a Current-Steering DACs Dynamic SFDR-I: The Cell-Dependent Delay Difference,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 1, pp. 3–15, Jan. 2006.
[15] T. Chen and G. G. E. Gielen, “The Analysis and Improvement of a Current-Steering DACs Dynamic SFDR-II: The Output-Dependent Delay Difference,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 268–279, Feb. 2007.
[16] A. van den Bosch, M. S. J. Steyaert, and W. Sansen, “An Accurate Yield Model for CMOS Current-Steering D/A Converters,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 2000, pp. 105–108.
[17] Y. Cong and R. L. Geiger, “Switching Sequence Optimization for Gradient Error Compensation in Thermometer-Decoded DAC Array,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 47, no. 7, pp. 585–595, Jul. 2000.
[18] J. Deveugele and M. S. J. Steyaert, “A 10-bit 250-MS/s Binary-Weighted Current- Steering DAC,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 320–329, Feb. 2006.
[19] M. Borremans, A. V. den Bosch, M. Steyaert, and W. Sansen, “A low power, 10-bit CMOS D/A Converter for High Speed Applications,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), May 2001, pp. 157–160.
[20] Y. Ikeda, M. Frey, and A. Matsuzawa, “A 14-bit 100-MS/s Digitally Calibrated Binary-Weighted Current-Steering CMOS DAC without Calibration ADC,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2007, pp. 356–359.
[21] A. Van den Bosch, M. S. J. Steyaert, and W. Sansen, “Solving Static and Dynamic Performance Limitations for High-Speed D/A Converters,” in Analog Circuit Design: Scalable Analog Circuit Design, High-Speed D/A Converters, RF Power Amplifiers. Norwell, MA: Kluwer, 2002, pp. 189–210.
[22] D. Giotta, P. Pessl, M. Clara, W. Klatzer, and R. Gaggl, “Low-Power 14-bit Current Steering DAC for ADSL2+/CO Applications in 0.13μm CMOS,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2004, pp. 163–166.
[23] M. Clara, W. Klatzer, B. Seger, A. D. Giandomenico, and L. Gori, “A 1.5 V 200MS/s 13b 25mW DAC with Randomized Nested Background Calibration in 0.13μm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2007, pp. 250–251.
[24] T. Chen, P. Geens, G. van der Plas, W. Dehaene, and G. Gielen, “A 14-bit 130-MHz CMOS Current-Steering DAC with Adjustable INL,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2004, pp. 167–170.
[25] K.-C. Kuo and C.-W. Wu, “A Switching Sequence for Linear Gradient Error Compensation in the DAC Design,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 8, pp. 502-506, Aug. 2011.
[26] H. Tuinhout, M. Pelgrom, R. Vries and M. Vertregt, “Effects of Metal Coverage on MOSFET Matching,” IEEE IEDM Technical Digest, 1996, pp. 735- 738.
[27] W.-T. Lin and T.-H. Kuo, “A Compact Dynamic-Performance-Improved Current- Steering DAC with Random Rotation-Based Binary-Weighted Selection,” IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 444-453, Feb. 2012.
[28] J. Hyde, T. Humes, C. Diorio, M. Thomas, and M. Figueroa, “A 300-MS/s 14-bit Digital-to-Analog Converter in Logic CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 5, pp.734-740, May 2003.
[29] K. L. Chan, J. Zhu, and I. Galton, “Dynamic Element Matching to Prevent Nonlinear Distortion from Pulse-Shape Mismatches in High-Resolution DACs,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2607–2078, Sep. 2008.
[30] D. A. Mercer, “Low-Power Approaches to High-Speed Current-Steering Digital-to- Analog Converters in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol.42, no. 8, pp. 1688-1698, Aug. 2007.
[31] Y. Tang, J. Briaire, K. Doris, R. van Veldhoven, P. van Beek, H. Hegt, and A. van Roermund, “A 14 b 200 MS/s DAC with SFDR > 78 dBc, IM3 < -83 dBc and NSD < -163 dBm/Hz Across the Whole Nyquist Band Enabled by Dynamic-Mismatch Mapping,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1371–1381, June. 2011.
[32] G. Engel, S. Kuo, and S. Rose, “A 14b 3/6GHz Current-Steering RF DAC in 0.18μm CMOS with 66dB ACLR at 2.9GHz,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2012, pp. 458-459.
[33] M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching Properties of MOS Transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp.1433–1439, Oct. 1989.
[34] W.-T. Lin and T.-H. Kuo, “A 12b 1.6GS/s 40mW DAC with >70dB SFDR over Entire Nyquist Bandwidth,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 474–475.
[35] B. Oyama, D. Ching, K. Thai, A. Gutierrez-Aitken, N. Cohen, D. Scott, K. Henning, E. Kaneshiro, P. Nam, J. Chen, P. Chang-Chien, V.J. Patel, “InP HBT/Si CMOS- Based 13-Bit 1.33GSps Digital-to-Analog Converter with >70 dB SFDR,” in Proc. IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2012.
[36] M.-J. Choe, K.-H. Baek, and M. Teshome, “A 1.6-GS/s 12-bit Return-to-Zero GaAs RF DAC for Multiple Nyquist Operation,” IEEE J. Solid-State Circuits, vol. 40, no 12, pp. 2456-2468., Dec. 2005.
[37] AD9772: 14-Bit 150 MSPS TxDAC with 2x Interpolation Filter. Analog Device Inc., 1999.
[38] Q. Huang, P. A. Francese, C. Martelli, and J. Nielsen, “A 200MS/s 14b 97mW DAC in 0.18μm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2004, pp 364-365.
[39] F. V. d. Sande, N. Lugil, F. Demarsin, Z. Hendrix, A. Andries, P. Brandt, W. Anklam, J. S. Patterson, B. Miller, M. Rytting, M. Whaley, B. Jewett, J. Liu, J. Wegman, and K. Poulton, “A 7.2 GSa/s, 14 Bit or 12 GSa/s, 12 Bit Signal Generator on a Chip in a 165 GHz fT BiCMOS Process,” IEEE J. Solid-State Circuits, vol. 47, no. 4, pp.1003-1012, Apr. 2012.
[40] G. A. M. v. d. Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert and G. E. Gielen, “A 14-bit Intrinsic Accuracy Q2 random Walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp.1708-1718, Dec. 1999.
[41] A. R. Bugeja, B.-S. Song, P. L. Rakers and Steven F. Gillig, “A 14-b, 100-MS/s CMOS DAC Designed for Spectral Performance,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp.1719-1732, Dec. 1999.