簡易檢索 / 詳目顯示

研究生: 謝忠暉
Hsieh, Chung-Hui
論文名稱: 以氨水改質PEDOT:PSS之研究及其應用:材料分析、相關機制探討及全無機鈣鈦礦發光二極體特性優化
The study of ammonia modified PEDOT:PSS films and their applications : material analyses, mechanism investigation and property improvement of inorganic perovskite light emitting diodes
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 117
中文關鍵詞: 全無機鈣鈦礦薄膜酸性中和機制鈣鈦礦晶相變化表面原子面積比例介面能障全無機鈣鈦礦發光二極體元件
外文關鍵詞: all-inorganic perovskite film, mechanism of acid-base reaction, crystallization change of CsPbBr3, atomic area ratio, interfacial energy barrier, all-inorganic perovskite light-emitting diodes
相關次數: 點閱:172下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以重量百分為30~33%的氨水進行PEDOT:PSS酸性中和及結合全無機鈣鈦礦材料來應用於電致發光二極體元件,達元件效率優化。由於全無機鈣鈦礦CsPbBr3本身成膜均勻性不佳,容易造成表面及界面缺陷產生而增加載子非輻射結合,降低了光致發光強度;此外,PEDOT:PSS作電洞傳輸層時,由於其本質為酸性而容易造成旋塗過程中與ITO內的In2O3於界面處反應而降解,使In3+進入PEDOT:PSS,增加了載子注入發光層能障而降低元件效率。本研究採取以不同比例氨水添加PEDOT:PSS來達酸性中和,添加氨水比例為0~14.3%時,其PEDOT:PSS仍為酸性環境,而添加氨水比例為25%、50%時其PEDOT:PSS為鹼性環境,在酸性環境及鹼性環境下之PEDOT:PSS溶液成膜現像並不同,而該現象也影響了CsPbBr3成膜均勻性及結晶性,本研究以XPS、AFM、XRD、TRPL及螢光光譜來探討其材料機制。可知在酸性環境時其PEDOT:PSS薄膜表面特性影響主要是由於A_(〖SO〗_3 H)/A_(〖SO〗_3^- )比例的下降所造成其特性的改變,而在鹼性環境時其PEDOT:PSS薄膜表面特性影響主要是由於APEDOT/APSS比例的增加所造成其特性改變。
    TRPL量測發現PEDOT:PSS未添加氨水時,其所形成之鈣鈦礦薄膜缺陷載子比例最高,達53.5%,代表薄膜缺陷最高,如此也降低了自由載子結合比例使得光致放光強度不佳,而添加氨水後可發現其所形成的鈣鈦礦薄膜缺陷載子結合比例明顯降低,代表薄膜缺陷的下降,在比例為14.3%時其自由載子生命週期最短(τ2 = 11.595ns),代表較容易再結合形成光子,其原因是由於CsPbBr3成膜於不同比例氨水改質的PEDOT:PSS薄膜時會造成薄膜晶相的改變,使I(100)/I(110)強度比例最大,造成載子不易經由三維(110)傳輸,增加了載子於能帶間再結合,增強了光致發光強度;而當氨水比例為50%時其I(100)/I(110)強度比例最小,造成載子易經由三維(110)傳輸,使自由載子比例最大及載子生命週期最長(τ2 = 14.232ns),增加了非輻射比例而降低放光強度。
    於元件端本研究目的是藉由傳輸層PEDOT:PSS添加不同比例氨水來提升元件效率,而最終元件亮度可從2540Cd/m2優化至14025Cd/m2,提升了5.5倍,在電流效率及EQE皆從1.61Cd/A及0.45%優化至4.17Cd/A及1.16%,提升了2.6倍。代表本實驗使用氨水改質PEDOT:PSS能夠明顯提升元件表現,其原因是由於PEDOT:PSS經氨水的改質不僅可以降低電洞注入能障,還可以增益鈣鈦礦薄膜均勻性及結晶性,除了增加載子注入發光層以外,也增益了發光層載子結合能力,達元件最佳化結果。

    In this study, we used a facile method to modify PEDOT:PSS with ammonium hydroxide 30~33wt% and then used as hole transport layer to apply for CsPbBr3 perovskite light-emitting diodes. However, there were some drawbacks which lead to the low efficiency of CsPbBr3 PeLED device as follows : (a) poor film formation and crystallization of CsPbBr3 perovskite which caused to the poor film coverage, serious defect traps and increased non-radiative recombination centers, (b) increasing hole injection barrier to active layer and (c) the PEDOT:PSS acidity leading to the degradation of the interface between the PEDOT:PSS and ITO layer. As a result, we treated PEDOT:PSS with ammonia to neturalize the hydrogen ions and we observed that it not only affected the film properties of PEDOT:PSS from under acidic to alkaline condition but also changed the morphology and crystallization of CsPbBr3 perovskite film and then influenced the performance of PeLED devices. And, the purpose of this study was improving the PeLED performance with preferable volume ratio of ammonia treated PEDOT:PSS.

    目錄 第一章 緒論 1 1-1 前言 1 1-2 有機電激發光元件的簡介 2 1-3 研究動機 4 1-4 論文架構 6 第二章 理論介紹與文獻回顧 8 2-1 螢光理論 8 2-2 電致發光二極體結構 10 2-3 電致發光二極體的發光原理 12 2-4 鈣鈦礦材料的介紹 14 2-4-1 鈣鈦礦由來 14 2-4-2 鈣鈦礦的結構 15 2-4-3 鈣鈦礦的種類及特性 18 2-5 鈣鈦礦發光二極體的發展 20 2-6 全無機鈣鈦礦發光二極體重要的文獻回顧 24 2-7 PEDOT:PSS酸鹼性改質應用於光電元件文獻回顧 28 第三章 實驗步驟與儀器原理 33 3-1 前言 33 3-2 實驗用材料 34 3-3 實驗步驟-全無機鈣鈦礦發光二極體元件製備 36 3-3-1 ITO基板前處理步驟 36 3-3-2 電洞傳輸層改質及成膜製程 37 3-3-3 全無機鈣鈦礦材料合成與成膜製程 40 3-3-4 電子傳輸層、電子注入層及金屬電極之蒸鍍製程 42 3-4 量測系統及特性分析 44 3-4-1 量測儀器設備 44 3-4-2 特性分析 46 第四章 實驗數據與結果討論 53 4-1 材料特性分析與機制探討 53 4-1-1 電洞傳輸層PEDOT:PSS經氨水改質之溶液PH值分析 53 4-1-2 電洞傳輸層PEDOT:PSS經氨水改質之XPS分析 54 4-1-3 電洞傳輸層PEDOT:PSS經氨水改質之化學機制探討 63 4-1-4 電洞傳輸層PEDOT:PSS經氨水改質之SEM分析 67 4-1-5 電洞傳輸層PEDOT:PSS經氨水改質之AFM分析 68 4-1-6 電洞傳輸層PEDOT:PSS經氨水改質之薄膜接觸角分析 73 4-1-7 電洞傳輸層PEDOT:PSS經氨水改質之薄膜導電度分析 76 4-2 PEDOT:PSS經氨水改質後對CsPbBr3薄膜影響及特性分析與機制探討 79 4-2-1 CsPbBr3薄膜表面SEM分析 79 4-2-2 CsPbBr3薄膜表面AFM分析 80 4-2-3 CsPbBr3薄膜於不同氨水改質之PEDOT:PSS薄膜decay time分析 82 4-2-4 CsPbBr3薄膜於不同氨水改質之PEDOT:PSS之XRD、PL及TRPL分析及機制探討 86 4-3 全無機鈣鈦礦發光二極體元件機制探討 90 4-3-1 不同氨水比例改質PEDOT:PSS之元件IV圖分析 90 4-3-2 不同氨水比例改質PEDOT:PSS之元件電流密度、效率及亮度分析 …………………………………………………………………………96 第五章 結論與未來展望 103 5-1 結論 103 5-2 未來展望 107 第六章 參考文獻 109   表目錄 表 2 1、鈣鈦礦材料種類 18 表 2 2、全無機鈣鈦礦及其添加改質之發光二極體文獻回顧 27 表 2 3、PEDOT:PSS改質之文獻回顧 30 表 2 4、PEDOT:PSS酸性改質之文獻回顧 32 表 3 1、測試溶劑之表面張力分量 51 表 4 1、不同氨水比例之PEDOT:PSS薄膜表面接觸角等特性對照表 74 表 4 2、鈣鈦礦薄膜之接觸角等特性對照表 75 表 4 3、薄膜導電度與氨水體積百分比之表格 78 表 4 4、不同體積百分之鈣鈦礦薄膜decay常數比較 85 表 4 5、不同氨水比例下對應的二次截止電位、HOMO電位及游離能值 93 表 4 6、主動層及傳輸層未改質下之全無機鈣鈦礦發光二極體文獻比較 101 表 4 7、PEDOT:PSS改質下之有機無機鈣鈦礦發光二極體文獻比較 101 表 4 8、不同方法改質下之全無機鈣鈦礦發光二極體文獻比較 102   圖目錄 圖 1 1、C. W. Tang等人所提出的異質接面雙層式結構[2] 4 圖 1 2、Friend等人之元件結構[4] 4 圖 2 1、Jablonski能階圖[7] 9 圖 2 2、OLED元件結構示意圖 11 圖 2 3、電致發光元件發光過程 14 圖 2 4、鈣鈦礦ABX3晶體結構[10][13] 15 圖 2 5、鈣鈦礦結構示意圖 (a) 3D立方相結構 (b) 3D正交相結構 (c) 六方晶體結構 17 圖 2 6、Ruddlesden-Popper二維層狀結構鈣鈦礦示意圖[16] 18 圖 2 7、不同層數之鈣鈦礦結構[17] 18 圖 2 8、(a)以PAPI作為發光層之發光二極體元件結構圖(b)OXD7化學結構圖[27] 21 圖 2 9、Tan等人發表之元件結構[28] 21 圖 2 10、Zeng等人發表之元件結構圖[29] 22 圖 2 11、CsPbX3 QLED元件圖(a-c)及EL圖譜(d)[29] 22 圖 2 12、CsBr/PbBr2比例為1.0、2.0之表面及側面形貌圖(a)元件結構圖(b)元件特性曲線(c)(d)[30] 23 圖 2 13、(a)以真空蒸鍍法成膜全無機鈣鈦礦示意圖[36](b)以溶液旋塗法形成鈣鈦礦薄膜示意圖[35] 27 圖 2 14、PEDOT:PSS經由熱壓印及蒸氣退火製程(TIVA)進行界面修飾之示意圖[52] 30 圖 3 1、全無機鈣鈦礦發光二極體結構示意圖 33 圖 3 2、PEDOT:PSS經氨水改質流程簡圖 38 圖 3 3、PEDOT:PSS旋轉塗布成膜示意圖 39 圖 3 4、PEDOT:PSS成膜製程示意圖 40 圖 3 5、全無機鈣鈦礦溶液製程示意圖 41 圖 3 6、全無機鈣鈦礦成膜製程示意圖 42 圖 3 7、液滴接觸角示意圖 49 圖 4 1、PEDOT:PSS溶液添加不同氨水比例下之PH值變化圖 54 圖 4 2、PEDOT與PSS之結構示意圖[65] 55 圖 4 3、PEDOT:PSS溶液態形成過程鍵結示意圖[65] 56 圖 4 4、PEDOT:PSS溶液態及形成薄膜之化學鍵結示意圖[66][67] 57 圖 4 5、PEDOT:PSS添加不同比例氨水之S元素XPS fitting 曲線圖 59 圖 4 6、APEDOT/APSS原子比例對氨水體積百分比作圖 59 圖 4 7、A_(〖SO〗_3 H)/A_(〖SO〗_3^- )對添加之氨水體積百分比關係圖……………………….. ......61 圖 4 8、(a)不同氨水比例下之In3+ XPS分析圖(b) In3+ XPS經itting後之分析圖(c)不同氨水比例下的A_(〖In〗^(3+) )/A_(〖In〗^(3+) (pristine) )關係圖………………………………….62 圖 4 9、PEDOT:PSS在添加氨水6.3%、9.1%、14.3%時之化學鍵結示意圖 65 圖 4 10、不同氨水比例添加PEDOT:PSS之N元素XPS分析 65 圖 4 11、A_(〖NH〗_4^+ )/A_(〖NH〗_4^+ )(pristine)原子面積比例關係圖…………………………………66 圖 4 12、PEDOT:PSS在添加氨水25%、50%時之化學鍵結示意圖 67 圖 4 13、PEDOT:PSS表面經不同比例氨水改質下之SEM 68 圖 4 14、不同氨水比例下之PEDOT:PSS薄膜AFM 70 圖 4 15、PEDOT:PSS薄膜粗糙度對氨水體積百比之關係圖 71 圖 4 16、氨水比例0%及14.3%之PEDOT:PSS薄膜AFM表面形貌比較 71 圖 4 17、氨水比例14.3%、25%及50%之PEDOT:PSS薄膜AFM表面形貌比較 72 圖 4 18、表面能與不同氨水百分比關係圖 75 圖 4 19、薄膜表面能與極性之氨水百分比關係圖 75 圖 4 20、鈣鈦礦薄膜與PEDOT:PSS表面能之不同氨水百分比關係圖 76 圖 4 21、氨水體積百分比對導電度之關係圖 78 圖 4 22、氨水體積百分比對PEDOT:PSS薄膜載子濃度關係圖 79 圖 4 23、CsPbBr3薄膜SEM 80 圖 4 24、鈣鈦礦薄膜之AFM表面形貌圖 81 圖 4 25、鈣鈦礦薄膜粗糙度對不同氨水體積百分比之關係圖 82 圖 4 26、CsPbBr3於不同氨水比例改質PEDOT:PSS之TRPL圖譜 85 圖 4 27、鈣鈦礦薄膜於不同氨水體積百分比之XRD圖譜 88 圖 4 28、零維(110)與三維(100)繞射強度比值對氨水體積百分比關係圖 89 圖 4 29、鈣鈦礦PL光譜圖及發光強度對氨水比例之關係圖 89 圖 4 30、PL強度關係與I(110)/I(100)比例關係之比較 90 圖 4 31、鈣鈦礦發光二極體元件能階示意圖 91 圖 4 32、鈣鈦礦發光二極體IV圖 91 圖 4 33、鈣鈦礦hole-only 元件IV圖 92 圖 4 34、不同氨水比例下PEDOT:PSS之UPS趨勢圖 93 圖 4 35、游離能隨氨水比例增加之關係圖 95 圖 4 36、不同氨水比例之HOMO能階示意圖 95 圖 4 37、元件J-V、L-V及I-L-V曲線圖 98 圖 4 38、元件之Current efficiency、L-I及EQE特性曲線圖及鈣鈦礦LED元件實體圖 99 圖 4 39、不同氨水比例之改質PEDOT:PSS之元件於10mA下之電致發光光譜圖 99 圖 4 40、(a)未添加氨水時之元件於5mA、10mA實體圖(b)14.3%氨水比例之元件於5mA、10mA實體圖 100  

    第六章 參考文獻
    [1] M. Pope, H. P. Kallmann, and P. J. Magnante, “ Electroluminescence in organic crystals,” The Journal of Chemical Physics, vol. 38, no. 8, pp. 2042-2043, 1963.
    [2] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied physics letters, vol. 51, no. 12, pp. 913-915, 1987.
    [3] C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” Journal of applied physics, vol. 65, no. 9, pp. 3610-3616, 1989.
    [4] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” nature, vol. 347, no. 6293, pp. 539-541, 1990.
    [5] M. P. De Jong, L. J. Van Ijzendoorn, and M. J. A. De Voigt, “Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes,” Applied Physics Letters, vol. 77, no. 14, pp. 2255-2257, 2000.
    [6] K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, and C. C. Chang, “Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer,” Applied physics letters, vol. 80, no. 15, pp. 2788-2790, 2002.
    [7] J. R. Lakowicz, “in principles of fluorescence spectroscopy,” Springer, pp. 1-23, 1999.
    [8] T. Tsutsui, and M. Terai, “Electric field-assisted bipolar charge spouting in organic thin-film diodes,” Applied physics letters, vol. 84, no. 3, pp. 440-442, 2004.
    [9] C. C. Chang, J. F. Chen, S. W. Hwang, & C. H.Chen, “Highly efficient white organic electroluminescent devices based on tandem architecture,” Applied physics letters, vol. 87, no. 25, pp. 253501, 2005.
    [10] N. G. Park, “Perovskite solar cells: an emerging photovoltaic technology,” Materials today, vol. 18, no. 2, pp. 65-72, 2015.
    [11] O. Muller, R. Roy, “The Major Ternary Structure Families”, Springer, New Tork, 1974.
    [12] W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon, and R. G. Palgrave, “On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system,” Chemical science, vol. 7, no.7, pp. 4548-4556, 2016.
    [13] Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen, and M. Wang, “Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?,” Nanoscale Advances, vol. 1, no. 4, pp. 1276-1289, 2019.
    [14] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, “Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites,” Acta Crystallographica Section B: Structural Science, vol. 64, no. 6, pp. 702-707, 2008.
    [15] M. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, “Properties and potential optoelectronic applications of lead halide perovskite nanocrystals,” Science, vol. 358, no. 6364, pp. 745-750, 2017.
    [16] https://phys.org/news/2018-12-stabilizing-d-layered-perovskites-photovoltaics.html
    [17] M. C. Weidman, A. J. Goodman, and W. A. Tisdale, “Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials,” Chemistry of Materials, vol. 29, no. 12, pp. 5019-5030, 2017.
    [18] L. Pedesseau, D. Sapori, B. Traore, R. Robles, H. H. Fang, M. A. Loi, and S. Tretiak, “Advances and promises of layered halide hybrid perovskite semiconductors,” ACS nano, vol. 10, no. 11, pp. 9776-9786, 2016.
    [19] J. Jagielski, S. Kumar, W. Y. Yu, and C. J. Shih, “Layer-controlled two-dimensional perovskites: Synthesis and optoelectronics,” Journal of Materials Chemistry C, vol. 5, no. 23, pp. 5610-5627, 2017.
    [20] S. Kumar, J. Jagielski, N. Kallikounis, Y. H. Kim, C. Wolf, F. Jenny, and T. W. Lee, “Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates,” Nano letters, vol. 17, no. 9, pp. 5277-5284, 2017.
    [21] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals.” Science, vol. 347, no. 6225, pp. 967-970, 2015.
    [22] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, vol. 342, no. 6156, pp. 341-344, 2013.
    [23] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano letters, vol. 13, no. 4, pp. 1764-1769, 2013.
    [24] N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam, and S. A. Haque, “Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells,” Nature communications, vol. 8, no. 1, pp. 1-10, 2017.
    [25] S. Huang, Z. Li, B. Wang, N. Zhu, C. Zhang, L. Kong, and L. Li, “Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination,” ACS applied materials & interfaces, vol. 9, no. 8, pp. 7249-7258, 2017.
    [26] H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko, and A. L. Rogach, “Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance,” ACS energy letters, vol. 2, no. 9, pp. 2071-2083, 2017.
    [27] M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3) 2PbI4,” Applied physics letters, vol. 65, no. 6, pp. 676-678, 1994.
    [28] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, and F. Hanusch, “Bright light-emitting diodes based on organometal halide perovskite,” Nature nanotechnology, vol. 9, no. 9, pp. 687-692, 2014.
    [29] J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum dot light‐emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3),” Advanced materials, vol. 27, no. 44, pp. 7162-7167, 2015.
    [30] N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” The journal of physical chemistry letters, vol. 6, no. 21, pp. 4360-4364, 2015.
    [31] M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, and Z. Lu, “Perovskite energy funnels for efficient light-emitting diodes,” Nature nanotechnology, vol. 11, no. 10, pp. 872-877, 2016.
    [32] Y. Zou, Q. Huang, Y. Yang, M. Ban, S. Li, Y. Han, and B. Sun, “Efficient Perovskite Light‐Emitting Diodes via Tuning Nanoplatelet Distribution and Crystallinity Orientation,” Advanced Materials Interfaces, vol. 5, no. 20, pp. 1801030, 2018.
    [33] K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, and W. Li, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature, vol. 562, no. 7726, pp. 245-248, 2018.
    [34] K. Kim, K. Ihm, and B. Kim, “Surface property of indium tin oxide (ITO) after various methods of cleaning,” Acta Physica Polonica A, vol. 127, no. 4, pp. 1176-1179, 2015.
    [35] Y. F. Ng, N. F. Jamaludin, N. Yantara, M. Li, V. K. R. Irukuvarjula, H. V. Demir, and N. Mathews, “Rapid crystallization of all-Inorganic CsPbBr3 perovskite for high-brightness light-emitting diodes,” Acs Omega, vol. 2, no. 6, pp. 2757-2764, 2017.
    [36] Y. Hu, Q. Wang, Y. L. Shi, M. Li, L. Zhang, Z. K. Wang, and L. S. Liao, “Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes,” Journal of Materials Chemistry C, vol. 5, no. 32, pp. 8144-8149, 2017.
    [37] F. Jin, B. Zhao, B. Chu, H. Zhao, Z. Su, W. Li, and F. Zhu, “Morphology control towards bright and stable inorganic halide perovskite light-emitting diodes,” Journal of Materials Chemistry C, vol. 6, no. 6, pp. 1573-1578, 2018.
    [38] Y. Meng, X. Wu, Z. Xiong, C. Lin, Z. Xiong, E. Blount, and P. Chen, “Electrode quenching control for highly efficient CsPbBr3 perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles,” Nanotechnology, vol. 29, no. 17, pp. 175203, 2018.
    [39] Y. Meng, M. Ahmadi, X. Wu, T. Xu, L. Xu, Z. Xiong, and P. Chen, “High performance and stable all-inorganic perovskite light emitting diodes by reducing luminescence quenching at PEDOT: PSS/Perovskites interface,” Organic Electronics, vol. 64, pp. 47-53, 2019.
    [40] Z. Wei, A. Perumal, R. Su, S. Sushant, J. Xing, Q. Zhang, and Q. Xiong, “Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes,” Nanoscale, vol. 8, no. 42, pp. 18021-18026, 2016.
    [41] L. Song, X. Guo, Y. Hu, Y. Lv, J. Lin, Y. Fan, and X. Liu, “Improved performance of CsPbBr 3 perovskite light-emitting devices by both boundary and interface defects passivation,” Nanoscale, vol. 10, no. 38, pp. 18315-18322, 2018.
    [42] S. Wu, S. Zhao, Z. Xu, D. Song, B. Qiao, H. Yue, and P. Wei, “Highly bright and stable all-inorganic perovskite light-emitting diodes with methoxypolyethylene glycols modified CsPbBr3 emission layer,” Applied Physics Letters, vol. 113, no. 21, pp. 213501, 2018.
    [43] X. Yang, H. Gu, S. Li, J. Li, H. Shi, J. Zhang, and Y. Tan, “Improved photoelectric performance of all-inorganic perovskite through different additives for green light-emitting diodes,” RSC Advances, vol. 9, no. 59, pp. 34506-34511, 2019.
    [44] W. Cai, Z. Chen, D. Chen, S. Su, Q. Xu, H. L. Yip, and Y. Cao, “High-performance and stable CsPbBr 3 light-emitting diodes based on polymer additive treatment,” RSC advances, vol. 9, no. 47, pp. 27684-27691, 2019.
    [45] W. Hao, Z. Cheng, L. Jin, and J. Yiming, “Electrochemical corrosion behaviors of ITO films at anodic and cathodic polarization in sodium hydroxide solution,” International Conference on Electronic Packaging Technology & High Density Packaging, pp. 1-4, 2008.
    [46] K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, and C. C. Chang, “Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer,” Applied physics letters, vol. 80, no. 15, pp. 2788-2790, 2002.
    [47] T. C. Tsai, H. C. Chang, C. H. Chen, Y. C. Huang, and W. T. Whang, “A facile dedoping approach for effectively tuning thermoelectricity and acidity of PEDOT: PSS films,” Organic Electronics, vol. 15, no. 3, pp. 641-645, 2014.
    [48] Q. Wang, C. C. Chueh, M. Eslamian, and A. K. Y. Jen, “Modulation of PEDOT: PSS pH for efficient inverted perovskite solar cells with reduced potential loss and enhanced stability,” ACS applied materials & interfaces, vol. 8, no. 46, pp. 32068-32076, 2016.
    [49] W. Sun, Y. Li, Y. Xiao, Z. Zhao, S. Ye, H. Rao, and Z. Chen, “An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells,” Organic Electronics, vol. 46, pp. 22-27, 2017.
    [50] B. Y. Kadem, M. Al-Hashimi, A. S. Hasan, R. G. Kadhim, Y. Rahaq, and A. K. Hassan, “The effects of the PEDOT: PSS acidity on the performance and stability of P3HT: PCBM-based OSCs,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 22, pp. 19287-19295, 2018.
    [51] Y. Wang, Y. Hu, D. Han, Q. Yuan, T. Cao, N. Chen, and L. Feng, “Ammonia-treated graphene oxide and PEDOT: PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability,” Organic Electronics, vol. 70, pp. 63-70, 2019.
    [52] M. Li, J. Wang, Y. Zhang, Y. Dai, L. Chen, C. Zheng, and W. Huang, “Thermal imprinting and vapor annealing of interfacial layers for high-performance organic light-emitting diodes,” Journal of Materials Chemistry C, vol. 7, no. 33, pp. 10281-10288, 2019.
    [53] J. Wang, H. Zhang, W. Ji, and H. Zhang, “Efficient quantum dot light emitting devices with ethanol treated PEDOT: PSS hole injection layer,” Synthetic Metals, vol. 209, pp. 484-489, 2015.
    [54] D. B. Kim, J. C. Yu, Y. S. Nam, D. W. Kim, E. D. Jung, S. Y. Lee, and D. Di Nuzzo, “Improved performance of perovskite light-emitting diodes using a PEDOT: PSS and MoO 3 composite layer,” Journal of Materials Chemistry C, vol. 4, no. 35, pp. 8161-8165, 2016.
    [55] Z. Wang, Z. Li, D. Zhou, and J. Yu, “Low turn-on voltage perovskite light-emitting diodes with methanol treated PEDOT: PSS as hole transport layer,” Applied Physics Letters, vol. 111, no. 23, pp. 233304, 2017.
    [56] C. Lin, P. Chen, Z. Xiong, D. Liu, G. Wang, Y. Meng, and Q. Song, “Interfacial engineering with ultrathin poly (9, 9-di-n-octylfluorenyl-2, 7-diyl)(PFO) layer for high efficient perovskite light-emitting diodes,” Nanotechnology, vol. 29, no. 7, pp. 075203, 2018.
    [57] X. F. Peng, X. Y. Wu, X. X. Ji, J. Ren, Q. Wang, G. Q. Li, and X. H. Yang, “Modified conducting polymer hole injection layer for high-efficiency perovskite light-emitting devices: enhanced hole injection and reduced luminescence quenching,” The journal of physical chemistry letters, vol. 8, no. 19, pp. 4691-4697, 2017.
    [58] P. Chen, Z. Xiong, X. Wu, M. Shao, Y. Meng, Z. H. Xiong, and C. Gao, “Nearly 100% efficiency enhancement of CH3NH3PbBr3 perovskite light-emitting diodes by utilizing plasmonic Au nanoparticles,” The journal of physical chemistry letters, vol. 8, no. 17, pp. 3961-3969, 2017.
    [59] N. Terasawa, and K. Asaka, “Performance enhancement of PEDOT: poly (4-styrenesulfonate) actuators by using ethylene glycol,” RSC advances, vol. 8, no. 32, pp. 17732-17738, 2018.
    [60] M. Wu, D. Zhao, Z. Wang, and J. Yu, “High-luminance perovskite light-emitting diodes with high-polarity alcohol solvent treating PEDOT: PSS as hole transport layer,” Nanoscale research letters, vol. 13, no. 1, pp. 1-9, 2018.
    [61] Y.Zhou, S.Mei, D. Sun, N. Liu, W. Shi, J. Feng, and X. Cao, “Improved efficiency of perovskite light-emitting diodes using a three-step spin-coated CH3NH3PbBr3 emitter and a PEDOT: PSS/MoO3-ammonia composite hole transport layer,” Micromachines, vol. 10, no. 7, pp. 459, 2019.
    [62] T. Young, “An Essay on the Cohesion of Fluids,” Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805
    [63] F. M. Fowkes, “ATTRACTIVE FORCES AT INTERFACE,” Industrial & Engineering Chemistry, vol. 56, pp. 40-52, 1964.
    [64] D. K. Owens, and R. C. Wendt, “Estimation of the surface free energy of polymers,” Journal of applied polymer science, vol. 13, no. 8, pp. 1741-1747, 1969.
    [65] T. H. Meen, K. L. Chen, Y. H. Chen, W. R. Chen, D. W. Chou, W. H. Lan, and C. J. Huang, “The Effects of dilute sulfuric acid on sheet resistance and transmittance in poly (3, 4-thylenedioxythiophene): poly (styrenesulfonate) films,” International Journal of Photoenergy, 2013.
    [66] U. Lang, E. Müller, N. Naujoks, and J. Dual, “Microscopical investigations of PEDOT: PSS thin films,” Advanced Functional Materials, vol. 19, no. 8, pp. 1215-1220, 2009.
    [67] J. Zhou, D. H. Anjum, L. Chen, X. Xu, I. A. Ventura, L. Jiang, and G. Lubineau, “The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses,” Journal of Materials Chemistry C, vol. 2, no. 46, pp. 9903-9910, 2014.
    [68] F. Zabihi, Y. Xie, S. Gao, and M. Eslamian, “Morphology, conductivity, and wetting characteristics of PEDOT: PSS thin films deposited by spin and spray coating,” Applied Surface Science, vol. 338, pp. 163-177, 2015.
    [69] J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, “Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents,” Synthetic Metals, vol. 126, no. 2-3, pp. 311-316, 2002.
    [70] . Liu, A. Palmieri, J. He, Y. Meng, N. Beauregard, S. L. Suib, and W. E. Mustain, “Highly conductive In-SnO 2/RGO nano-heterostructures with improved lithium-ion battery performance,” Scientific reports, vol. 6, pp. 25860, 2016.
    [71] https://chemiday.com/en/reaction/
    [72] Y. Xia, and J. Ouyang, “Anion effect on salt-induced conductivity enhancement of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) films,” Organic Electronics, vol. 11, no. 6, pp. 1129-1135, 2010.
    [73] A. Iyer, J. Hack, A. Trujillo, D. Alejandro, B. Tew, J. Zide, and R. Opila, “Effects of Co-Solvents on the Performance of PEDOT: PSS Films and Hybrid Photovoltaic Devices,” Applied Sciences, vol. 8, no. 11, pp. 2052, 2018.
    [74] W. H. Chen, L. Qiu, P. Zhang, P. C. Jiang, P. Du, L. Song, and F. Ko, “Simple fabrication of a highly conductive and passivated PEDOT: PSS film via cryo-controlled quasi-congealing spin-coating for flexible perovskite solar cells,” Journal of Materials Chemistry C, vol. 7, no. 33, pp. 10247-10256, 2019.
    [75] Q. Chen, H. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, and Y. Yang, “Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells,” Nano letters, vol. 14, no. 7, pp. 4158-4163, 2014.
    [76] J. Li, P. Du, S. Li, J. Liu, M. Zhu, Z. Tan, and Z. Nie, “High‐Throughput Combinatorial Optimizations of Perovskite Light‐Emitting Diodes Based on All‐Vacuum Deposition,” Advanced Functional Materials, vol. 29, no. 51, pp. 1903607, 2019.
    [77] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” The journal of physical chemistry letters, vol. 7, no. 1, pp. 167-172, 2016.
    [78] R. Liu, H. Zhou, Z. Song, X. Yang, D. Wu, Z. Song, and Y. Yan, “Low-reflection,(110)-orientation-preferred CsPbBr 3 nanonet films for application in high-performance perovskite photodetectors,” Nanoscale, vol. 11, no. 19, pp. 9302-9309, 2019.
    [79] S. D. Yambem, K. S. Liao, N. J. Alley, and S. A. Curran, “Stable organic photovoltaics using Ag thin film anodes,” Journal of Materials Chemistry, vol. 22, no. 14, pp. 6894-6898, 2012.
    [80] A. Sharma, S. E. Watkins, D. A. Lewis, and G. Andersson, “Effect of indium and tin contamination on the efficiency and electronic properties of organic bulk hetero-junction solar cells,” Solar energy materials and solar cells, vol. 95, no. 12, pp. 3251-3255, 2011.
    [81] Q. Niu, W. Huang, J. Tong, H. Lv, Y. Deng, Y. Ma, and W. Huang, “Understanding the mechanism of PEDOT: PSS modification via solvent on the morphology of perovskite films for efficient solar cells,” Synthetic Metals, vol. 243, pp. 17-24, 2018.
    [82] T. T. Ava, A. Al Mamun, S. Marsillac, and G. Namkoong, “A review: thermal stability of methylammonium lead halide based perovskite solar cells,” Applied Sciences, vol. 9, no. 1, pp. 188, 2019.
    [83] L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang, and E. H. Sargent, “Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes,” Nature communications, vol. 8, no. 1, pp. 1-8, 2017.
    [84] W. Li, Y. X. Xu, D. Wang, F. Chen, and Z. K. Chen, “Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition,” Organic Electronics, vol. 57, pp. 60-67, 2018.
    [85] A. L. Palma, L. Cinà, Y. Busby, A. Marsella, A. Agresti, S. Pescetelli, and A. Di Carlo, “Mesoscopic perovskite light-emitting diodes,” ACS applied materials & interfaces, vol. 8, no. 40, pp. 26989-26997, 2016.
    [86] V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nature communications, vol. 5, no. 1, pp. 1-6, 2014.
    [87] X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. Choy, and A. L. Rogach, “Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer,” Nano letters, vol. 16, no. 2, pp. 1415-1420, 2016.
    [88] G. Li, F. W. R. Rivarola, N. J. Davis, S. Bai, T. C. Jellicoe, F. de la Peña, and N. C. Greenham, “Highly efficient perovskite nanocrystal light‐emitting diodes enabled by a universal crosslinking method,” Advanced materials, vol. 28, no. 18, pp. 3528-3534, 2016.
    [89] B. Li, L. Fu, S. Li, H. Li, L. Pan, L. Wang, and L. Yin, “Pathways toward high-performance inorganic perovskite solar cells: challenges and strategies,” Journal of Materials Chemistry A, vol. 7, no. 36, pp. 20494-20518, 2019.
    [90] B. Zhao, Y. S. Lau, A. A. Syed, F. Jin, and F. Zhu, “Effect of small molecule additives on efficient operation of all inorganic polycrystalline perovskite light-emitting diodes,” Journal of Materials Chemistry C, vol. 7, no. 18, pp. 5293-5298, 2019.
    [91] M. O. Bamgbopa, J. Edberg, I. Engquist, M. Berggren, and K. Tybrandt, “Understanding the characteristics of conducting polymer-redox biopolymer supercapacitors,” Journal of Materials Chemistry A, vol. 7, no. 41, pp. 23973-23980, 2019.
    [92] Y. Kim, W. Cho, Y. Kim, H. Cho, and J. H. Kim, “Electrical characteristics of heterogeneous polymer layers in PEDOT: PSS films,” Journal of Materials Chemistry C, vol. 6, no. 33, pp. 8906-8913, 2018.
    [93] C. H. Gao, X. J. Ma, Y. Zhang, F. X. Yu, Z. Y. Xiong, Z. Q. Wang, and Z. H. Xiong, “84% efficiency improvement in all-inorganic perovskite light-emitting diodes assisted by a phosphorescent material,” RSC advances, vol. 8, no. 28, pp. 15698-15702, 2018.

    下載圖示 校內:2024-04-30公開
    校外:2025-04-30公開
    QR CODE