| 研究生: |
謝忠暉 Hsieh, Chung-Hui |
|---|---|
| 論文名稱: |
以氨水改質PEDOT:PSS之研究及其應用:材料分析、相關機制探討及全無機鈣鈦礦發光二極體特性優化 The study of ammonia modified PEDOT:PSS films and their applications : material analyses, mechanism investigation and property improvement of inorganic perovskite light emitting diodes |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 全無機鈣鈦礦薄膜 、酸性中和機制 、鈣鈦礦晶相變化 、表面原子面積比例 、介面能障 、全無機鈣鈦礦發光二極體元件 |
| 外文關鍵詞: | all-inorganic perovskite film, mechanism of acid-base reaction, crystallization change of CsPbBr3, atomic area ratio, interfacial energy barrier, all-inorganic perovskite light-emitting diodes |
| 相關次數: | 點閱:172 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以重量百分為30~33%的氨水進行PEDOT:PSS酸性中和及結合全無機鈣鈦礦材料來應用於電致發光二極體元件,達元件效率優化。由於全無機鈣鈦礦CsPbBr3本身成膜均勻性不佳,容易造成表面及界面缺陷產生而增加載子非輻射結合,降低了光致發光強度;此外,PEDOT:PSS作電洞傳輸層時,由於其本質為酸性而容易造成旋塗過程中與ITO內的In2O3於界面處反應而降解,使In3+進入PEDOT:PSS,增加了載子注入發光層能障而降低元件效率。本研究採取以不同比例氨水添加PEDOT:PSS來達酸性中和,添加氨水比例為0~14.3%時,其PEDOT:PSS仍為酸性環境,而添加氨水比例為25%、50%時其PEDOT:PSS為鹼性環境,在酸性環境及鹼性環境下之PEDOT:PSS溶液成膜現像並不同,而該現象也影響了CsPbBr3成膜均勻性及結晶性,本研究以XPS、AFM、XRD、TRPL及螢光光譜來探討其材料機制。可知在酸性環境時其PEDOT:PSS薄膜表面特性影響主要是由於A_(〖SO〗_3 H)/A_(〖SO〗_3^- )比例的下降所造成其特性的改變,而在鹼性環境時其PEDOT:PSS薄膜表面特性影響主要是由於APEDOT/APSS比例的增加所造成其特性改變。
TRPL量測發現PEDOT:PSS未添加氨水時,其所形成之鈣鈦礦薄膜缺陷載子比例最高,達53.5%,代表薄膜缺陷最高,如此也降低了自由載子結合比例使得光致放光強度不佳,而添加氨水後可發現其所形成的鈣鈦礦薄膜缺陷載子結合比例明顯降低,代表薄膜缺陷的下降,在比例為14.3%時其自由載子生命週期最短(τ2 = 11.595ns),代表較容易再結合形成光子,其原因是由於CsPbBr3成膜於不同比例氨水改質的PEDOT:PSS薄膜時會造成薄膜晶相的改變,使I(100)/I(110)強度比例最大,造成載子不易經由三維(110)傳輸,增加了載子於能帶間再結合,增強了光致發光強度;而當氨水比例為50%時其I(100)/I(110)強度比例最小,造成載子易經由三維(110)傳輸,使自由載子比例最大及載子生命週期最長(τ2 = 14.232ns),增加了非輻射比例而降低放光強度。
於元件端本研究目的是藉由傳輸層PEDOT:PSS添加不同比例氨水來提升元件效率,而最終元件亮度可從2540Cd/m2優化至14025Cd/m2,提升了5.5倍,在電流效率及EQE皆從1.61Cd/A及0.45%優化至4.17Cd/A及1.16%,提升了2.6倍。代表本實驗使用氨水改質PEDOT:PSS能夠明顯提升元件表現,其原因是由於PEDOT:PSS經氨水的改質不僅可以降低電洞注入能障,還可以增益鈣鈦礦薄膜均勻性及結晶性,除了增加載子注入發光層以外,也增益了發光層載子結合能力,達元件最佳化結果。
In this study, we used a facile method to modify PEDOT:PSS with ammonium hydroxide 30~33wt% and then used as hole transport layer to apply for CsPbBr3 perovskite light-emitting diodes. However, there were some drawbacks which lead to the low efficiency of CsPbBr3 PeLED device as follows : (a) poor film formation and crystallization of CsPbBr3 perovskite which caused to the poor film coverage, serious defect traps and increased non-radiative recombination centers, (b) increasing hole injection barrier to active layer and (c) the PEDOT:PSS acidity leading to the degradation of the interface between the PEDOT:PSS and ITO layer. As a result, we treated PEDOT:PSS with ammonia to neturalize the hydrogen ions and we observed that it not only affected the film properties of PEDOT:PSS from under acidic to alkaline condition but also changed the morphology and crystallization of CsPbBr3 perovskite film and then influenced the performance of PeLED devices. And, the purpose of this study was improving the PeLED performance with preferable volume ratio of ammonia treated PEDOT:PSS.
第六章 參考文獻
[1] M. Pope, H. P. Kallmann, and P. J. Magnante, “ Electroluminescence in organic crystals,” The Journal of Chemical Physics, vol. 38, no. 8, pp. 2042-2043, 1963.
[2] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied physics letters, vol. 51, no. 12, pp. 913-915, 1987.
[3] C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” Journal of applied physics, vol. 65, no. 9, pp. 3610-3616, 1989.
[4] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” nature, vol. 347, no. 6293, pp. 539-541, 1990.
[5] M. P. De Jong, L. J. Van Ijzendoorn, and M. J. A. De Voigt, “Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes,” Applied Physics Letters, vol. 77, no. 14, pp. 2255-2257, 2000.
[6] K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, and C. C. Chang, “Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer,” Applied physics letters, vol. 80, no. 15, pp. 2788-2790, 2002.
[7] J. R. Lakowicz, “in principles of fluorescence spectroscopy,” Springer, pp. 1-23, 1999.
[8] T. Tsutsui, and M. Terai, “Electric field-assisted bipolar charge spouting in organic thin-film diodes,” Applied physics letters, vol. 84, no. 3, pp. 440-442, 2004.
[9] C. C. Chang, J. F. Chen, S. W. Hwang, & C. H.Chen, “Highly efficient white organic electroluminescent devices based on tandem architecture,” Applied physics letters, vol. 87, no. 25, pp. 253501, 2005.
[10] N. G. Park, “Perovskite solar cells: an emerging photovoltaic technology,” Materials today, vol. 18, no. 2, pp. 65-72, 2015.
[11] O. Muller, R. Roy, “The Major Ternary Structure Families”, Springer, New Tork, 1974.
[12] W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon, and R. G. Palgrave, “On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system,” Chemical science, vol. 7, no.7, pp. 4548-4556, 2016.
[13] Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen, and M. Wang, “Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?,” Nanoscale Advances, vol. 1, no. 4, pp. 1276-1289, 2019.
[14] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, “Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites,” Acta Crystallographica Section B: Structural Science, vol. 64, no. 6, pp. 702-707, 2008.
[15] M. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, “Properties and potential optoelectronic applications of lead halide perovskite nanocrystals,” Science, vol. 358, no. 6364, pp. 745-750, 2017.
[16] https://phys.org/news/2018-12-stabilizing-d-layered-perovskites-photovoltaics.html
[17] M. C. Weidman, A. J. Goodman, and W. A. Tisdale, “Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials,” Chemistry of Materials, vol. 29, no. 12, pp. 5019-5030, 2017.
[18] L. Pedesseau, D. Sapori, B. Traore, R. Robles, H. H. Fang, M. A. Loi, and S. Tretiak, “Advances and promises of layered halide hybrid perovskite semiconductors,” ACS nano, vol. 10, no. 11, pp. 9776-9786, 2016.
[19] J. Jagielski, S. Kumar, W. Y. Yu, and C. J. Shih, “Layer-controlled two-dimensional perovskites: Synthesis and optoelectronics,” Journal of Materials Chemistry C, vol. 5, no. 23, pp. 5610-5627, 2017.
[20] S. Kumar, J. Jagielski, N. Kallikounis, Y. H. Kim, C. Wolf, F. Jenny, and T. W. Lee, “Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates,” Nano letters, vol. 17, no. 9, pp. 5277-5284, 2017.
[21] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals.” Science, vol. 347, no. 6225, pp. 967-970, 2015.
[22] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, vol. 342, no. 6156, pp. 341-344, 2013.
[23] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano letters, vol. 13, no. 4, pp. 1764-1769, 2013.
[24] N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam, and S. A. Haque, “Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells,” Nature communications, vol. 8, no. 1, pp. 1-10, 2017.
[25] S. Huang, Z. Li, B. Wang, N. Zhu, C. Zhang, L. Kong, and L. Li, “Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination,” ACS applied materials & interfaces, vol. 9, no. 8, pp. 7249-7258, 2017.
[26] H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko, and A. L. Rogach, “Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance,” ACS energy letters, vol. 2, no. 9, pp. 2071-2083, 2017.
[27] M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3) 2PbI4,” Applied physics letters, vol. 65, no. 6, pp. 676-678, 1994.
[28] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, and F. Hanusch, “Bright light-emitting diodes based on organometal halide perovskite,” Nature nanotechnology, vol. 9, no. 9, pp. 687-692, 2014.
[29] J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum dot light‐emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3),” Advanced materials, vol. 27, no. 44, pp. 7162-7167, 2015.
[30] N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” The journal of physical chemistry letters, vol. 6, no. 21, pp. 4360-4364, 2015.
[31] M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, and Z. Lu, “Perovskite energy funnels for efficient light-emitting diodes,” Nature nanotechnology, vol. 11, no. 10, pp. 872-877, 2016.
[32] Y. Zou, Q. Huang, Y. Yang, M. Ban, S. Li, Y. Han, and B. Sun, “Efficient Perovskite Light‐Emitting Diodes via Tuning Nanoplatelet Distribution and Crystallinity Orientation,” Advanced Materials Interfaces, vol. 5, no. 20, pp. 1801030, 2018.
[33] K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, and W. Li, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature, vol. 562, no. 7726, pp. 245-248, 2018.
[34] K. Kim, K. Ihm, and B. Kim, “Surface property of indium tin oxide (ITO) after various methods of cleaning,” Acta Physica Polonica A, vol. 127, no. 4, pp. 1176-1179, 2015.
[35] Y. F. Ng, N. F. Jamaludin, N. Yantara, M. Li, V. K. R. Irukuvarjula, H. V. Demir, and N. Mathews, “Rapid crystallization of all-Inorganic CsPbBr3 perovskite for high-brightness light-emitting diodes,” Acs Omega, vol. 2, no. 6, pp. 2757-2764, 2017.
[36] Y. Hu, Q. Wang, Y. L. Shi, M. Li, L. Zhang, Z. K. Wang, and L. S. Liao, “Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes,” Journal of Materials Chemistry C, vol. 5, no. 32, pp. 8144-8149, 2017.
[37] F. Jin, B. Zhao, B. Chu, H. Zhao, Z. Su, W. Li, and F. Zhu, “Morphology control towards bright and stable inorganic halide perovskite light-emitting diodes,” Journal of Materials Chemistry C, vol. 6, no. 6, pp. 1573-1578, 2018.
[38] Y. Meng, X. Wu, Z. Xiong, C. Lin, Z. Xiong, E. Blount, and P. Chen, “Electrode quenching control for highly efficient CsPbBr3 perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles,” Nanotechnology, vol. 29, no. 17, pp. 175203, 2018.
[39] Y. Meng, M. Ahmadi, X. Wu, T. Xu, L. Xu, Z. Xiong, and P. Chen, “High performance and stable all-inorganic perovskite light emitting diodes by reducing luminescence quenching at PEDOT: PSS/Perovskites interface,” Organic Electronics, vol. 64, pp. 47-53, 2019.
[40] Z. Wei, A. Perumal, R. Su, S. Sushant, J. Xing, Q. Zhang, and Q. Xiong, “Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes,” Nanoscale, vol. 8, no. 42, pp. 18021-18026, 2016.
[41] L. Song, X. Guo, Y. Hu, Y. Lv, J. Lin, Y. Fan, and X. Liu, “Improved performance of CsPbBr 3 perovskite light-emitting devices by both boundary and interface defects passivation,” Nanoscale, vol. 10, no. 38, pp. 18315-18322, 2018.
[42] S. Wu, S. Zhao, Z. Xu, D. Song, B. Qiao, H. Yue, and P. Wei, “Highly bright and stable all-inorganic perovskite light-emitting diodes with methoxypolyethylene glycols modified CsPbBr3 emission layer,” Applied Physics Letters, vol. 113, no. 21, pp. 213501, 2018.
[43] X. Yang, H. Gu, S. Li, J. Li, H. Shi, J. Zhang, and Y. Tan, “Improved photoelectric performance of all-inorganic perovskite through different additives for green light-emitting diodes,” RSC Advances, vol. 9, no. 59, pp. 34506-34511, 2019.
[44] W. Cai, Z. Chen, D. Chen, S. Su, Q. Xu, H. L. Yip, and Y. Cao, “High-performance and stable CsPbBr 3 light-emitting diodes based on polymer additive treatment,” RSC advances, vol. 9, no. 47, pp. 27684-27691, 2019.
[45] W. Hao, Z. Cheng, L. Jin, and J. Yiming, “Electrochemical corrosion behaviors of ITO films at anodic and cathodic polarization in sodium hydroxide solution,” International Conference on Electronic Packaging Technology & High Density Packaging, pp. 1-4, 2008.
[46] K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, and C. C. Chang, “Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer,” Applied physics letters, vol. 80, no. 15, pp. 2788-2790, 2002.
[47] T. C. Tsai, H. C. Chang, C. H. Chen, Y. C. Huang, and W. T. Whang, “A facile dedoping approach for effectively tuning thermoelectricity and acidity of PEDOT: PSS films,” Organic Electronics, vol. 15, no. 3, pp. 641-645, 2014.
[48] Q. Wang, C. C. Chueh, M. Eslamian, and A. K. Y. Jen, “Modulation of PEDOT: PSS pH for efficient inverted perovskite solar cells with reduced potential loss and enhanced stability,” ACS applied materials & interfaces, vol. 8, no. 46, pp. 32068-32076, 2016.
[49] W. Sun, Y. Li, Y. Xiao, Z. Zhao, S. Ye, H. Rao, and Z. Chen, “An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells,” Organic Electronics, vol. 46, pp. 22-27, 2017.
[50] B. Y. Kadem, M. Al-Hashimi, A. S. Hasan, R. G. Kadhim, Y. Rahaq, and A. K. Hassan, “The effects of the PEDOT: PSS acidity on the performance and stability of P3HT: PCBM-based OSCs,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 22, pp. 19287-19295, 2018.
[51] Y. Wang, Y. Hu, D. Han, Q. Yuan, T. Cao, N. Chen, and L. Feng, “Ammonia-treated graphene oxide and PEDOT: PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability,” Organic Electronics, vol. 70, pp. 63-70, 2019.
[52] M. Li, J. Wang, Y. Zhang, Y. Dai, L. Chen, C. Zheng, and W. Huang, “Thermal imprinting and vapor annealing of interfacial layers for high-performance organic light-emitting diodes,” Journal of Materials Chemistry C, vol. 7, no. 33, pp. 10281-10288, 2019.
[53] J. Wang, H. Zhang, W. Ji, and H. Zhang, “Efficient quantum dot light emitting devices with ethanol treated PEDOT: PSS hole injection layer,” Synthetic Metals, vol. 209, pp. 484-489, 2015.
[54] D. B. Kim, J. C. Yu, Y. S. Nam, D. W. Kim, E. D. Jung, S. Y. Lee, and D. Di Nuzzo, “Improved performance of perovskite light-emitting diodes using a PEDOT: PSS and MoO 3 composite layer,” Journal of Materials Chemistry C, vol. 4, no. 35, pp. 8161-8165, 2016.
[55] Z. Wang, Z. Li, D. Zhou, and J. Yu, “Low turn-on voltage perovskite light-emitting diodes with methanol treated PEDOT: PSS as hole transport layer,” Applied Physics Letters, vol. 111, no. 23, pp. 233304, 2017.
[56] C. Lin, P. Chen, Z. Xiong, D. Liu, G. Wang, Y. Meng, and Q. Song, “Interfacial engineering with ultrathin poly (9, 9-di-n-octylfluorenyl-2, 7-diyl)(PFO) layer for high efficient perovskite light-emitting diodes,” Nanotechnology, vol. 29, no. 7, pp. 075203, 2018.
[57] X. F. Peng, X. Y. Wu, X. X. Ji, J. Ren, Q. Wang, G. Q. Li, and X. H. Yang, “Modified conducting polymer hole injection layer for high-efficiency perovskite light-emitting devices: enhanced hole injection and reduced luminescence quenching,” The journal of physical chemistry letters, vol. 8, no. 19, pp. 4691-4697, 2017.
[58] P. Chen, Z. Xiong, X. Wu, M. Shao, Y. Meng, Z. H. Xiong, and C. Gao, “Nearly 100% efficiency enhancement of CH3NH3PbBr3 perovskite light-emitting diodes by utilizing plasmonic Au nanoparticles,” The journal of physical chemistry letters, vol. 8, no. 17, pp. 3961-3969, 2017.
[59] N. Terasawa, and K. Asaka, “Performance enhancement of PEDOT: poly (4-styrenesulfonate) actuators by using ethylene glycol,” RSC advances, vol. 8, no. 32, pp. 17732-17738, 2018.
[60] M. Wu, D. Zhao, Z. Wang, and J. Yu, “High-luminance perovskite light-emitting diodes with high-polarity alcohol solvent treating PEDOT: PSS as hole transport layer,” Nanoscale research letters, vol. 13, no. 1, pp. 1-9, 2018.
[61] Y.Zhou, S.Mei, D. Sun, N. Liu, W. Shi, J. Feng, and X. Cao, “Improved efficiency of perovskite light-emitting diodes using a three-step spin-coated CH3NH3PbBr3 emitter and a PEDOT: PSS/MoO3-ammonia composite hole transport layer,” Micromachines, vol. 10, no. 7, pp. 459, 2019.
[62] T. Young, “An Essay on the Cohesion of Fluids,” Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805
[63] F. M. Fowkes, “ATTRACTIVE FORCES AT INTERFACE,” Industrial & Engineering Chemistry, vol. 56, pp. 40-52, 1964.
[64] D. K. Owens, and R. C. Wendt, “Estimation of the surface free energy of polymers,” Journal of applied polymer science, vol. 13, no. 8, pp. 1741-1747, 1969.
[65] T. H. Meen, K. L. Chen, Y. H. Chen, W. R. Chen, D. W. Chou, W. H. Lan, and C. J. Huang, “The Effects of dilute sulfuric acid on sheet resistance and transmittance in poly (3, 4-thylenedioxythiophene): poly (styrenesulfonate) films,” International Journal of Photoenergy, 2013.
[66] U. Lang, E. Müller, N. Naujoks, and J. Dual, “Microscopical investigations of PEDOT: PSS thin films,” Advanced Functional Materials, vol. 19, no. 8, pp. 1215-1220, 2009.
[67] J. Zhou, D. H. Anjum, L. Chen, X. Xu, I. A. Ventura, L. Jiang, and G. Lubineau, “The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses,” Journal of Materials Chemistry C, vol. 2, no. 46, pp. 9903-9910, 2014.
[68] F. Zabihi, Y. Xie, S. Gao, and M. Eslamian, “Morphology, conductivity, and wetting characteristics of PEDOT: PSS thin films deposited by spin and spray coating,” Applied Surface Science, vol. 338, pp. 163-177, 2015.
[69] J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, “Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents,” Synthetic Metals, vol. 126, no. 2-3, pp. 311-316, 2002.
[70] . Liu, A. Palmieri, J. He, Y. Meng, N. Beauregard, S. L. Suib, and W. E. Mustain, “Highly conductive In-SnO 2/RGO nano-heterostructures with improved lithium-ion battery performance,” Scientific reports, vol. 6, pp. 25860, 2016.
[71] https://chemiday.com/en/reaction/
[72] Y. Xia, and J. Ouyang, “Anion effect on salt-induced conductivity enhancement of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) films,” Organic Electronics, vol. 11, no. 6, pp. 1129-1135, 2010.
[73] A. Iyer, J. Hack, A. Trujillo, D. Alejandro, B. Tew, J. Zide, and R. Opila, “Effects of Co-Solvents on the Performance of PEDOT: PSS Films and Hybrid Photovoltaic Devices,” Applied Sciences, vol. 8, no. 11, pp. 2052, 2018.
[74] W. H. Chen, L. Qiu, P. Zhang, P. C. Jiang, P. Du, L. Song, and F. Ko, “Simple fabrication of a highly conductive and passivated PEDOT: PSS film via cryo-controlled quasi-congealing spin-coating for flexible perovskite solar cells,” Journal of Materials Chemistry C, vol. 7, no. 33, pp. 10247-10256, 2019.
[75] Q. Chen, H. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, and Y. Yang, “Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells,” Nano letters, vol. 14, no. 7, pp. 4158-4163, 2014.
[76] J. Li, P. Du, S. Li, J. Liu, M. Zhu, Z. Tan, and Z. Nie, “High‐Throughput Combinatorial Optimizations of Perovskite Light‐Emitting Diodes Based on All‐Vacuum Deposition,” Advanced Functional Materials, vol. 29, no. 51, pp. 1903607, 2019.
[77] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” The journal of physical chemistry letters, vol. 7, no. 1, pp. 167-172, 2016.
[78] R. Liu, H. Zhou, Z. Song, X. Yang, D. Wu, Z. Song, and Y. Yan, “Low-reflection,(110)-orientation-preferred CsPbBr 3 nanonet films for application in high-performance perovskite photodetectors,” Nanoscale, vol. 11, no. 19, pp. 9302-9309, 2019.
[79] S. D. Yambem, K. S. Liao, N. J. Alley, and S. A. Curran, “Stable organic photovoltaics using Ag thin film anodes,” Journal of Materials Chemistry, vol. 22, no. 14, pp. 6894-6898, 2012.
[80] A. Sharma, S. E. Watkins, D. A. Lewis, and G. Andersson, “Effect of indium and tin contamination on the efficiency and electronic properties of organic bulk hetero-junction solar cells,” Solar energy materials and solar cells, vol. 95, no. 12, pp. 3251-3255, 2011.
[81] Q. Niu, W. Huang, J. Tong, H. Lv, Y. Deng, Y. Ma, and W. Huang, “Understanding the mechanism of PEDOT: PSS modification via solvent on the morphology of perovskite films for efficient solar cells,” Synthetic Metals, vol. 243, pp. 17-24, 2018.
[82] T. T. Ava, A. Al Mamun, S. Marsillac, and G. Namkoong, “A review: thermal stability of methylammonium lead halide based perovskite solar cells,” Applied Sciences, vol. 9, no. 1, pp. 188, 2019.
[83] L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang, and E. H. Sargent, “Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes,” Nature communications, vol. 8, no. 1, pp. 1-8, 2017.
[84] W. Li, Y. X. Xu, D. Wang, F. Chen, and Z. K. Chen, “Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition,” Organic Electronics, vol. 57, pp. 60-67, 2018.
[85] A. L. Palma, L. Cinà, Y. Busby, A. Marsella, A. Agresti, S. Pescetelli, and A. Di Carlo, “Mesoscopic perovskite light-emitting diodes,” ACS applied materials & interfaces, vol. 8, no. 40, pp. 26989-26997, 2016.
[86] V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nature communications, vol. 5, no. 1, pp. 1-6, 2014.
[87] X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. Choy, and A. L. Rogach, “Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer,” Nano letters, vol. 16, no. 2, pp. 1415-1420, 2016.
[88] G. Li, F. W. R. Rivarola, N. J. Davis, S. Bai, T. C. Jellicoe, F. de la Peña, and N. C. Greenham, “Highly efficient perovskite nanocrystal light‐emitting diodes enabled by a universal crosslinking method,” Advanced materials, vol. 28, no. 18, pp. 3528-3534, 2016.
[89] B. Li, L. Fu, S. Li, H. Li, L. Pan, L. Wang, and L. Yin, “Pathways toward high-performance inorganic perovskite solar cells: challenges and strategies,” Journal of Materials Chemistry A, vol. 7, no. 36, pp. 20494-20518, 2019.
[90] B. Zhao, Y. S. Lau, A. A. Syed, F. Jin, and F. Zhu, “Effect of small molecule additives on efficient operation of all inorganic polycrystalline perovskite light-emitting diodes,” Journal of Materials Chemistry C, vol. 7, no. 18, pp. 5293-5298, 2019.
[91] M. O. Bamgbopa, J. Edberg, I. Engquist, M. Berggren, and K. Tybrandt, “Understanding the characteristics of conducting polymer-redox biopolymer supercapacitors,” Journal of Materials Chemistry A, vol. 7, no. 41, pp. 23973-23980, 2019.
[92] Y. Kim, W. Cho, Y. Kim, H. Cho, and J. H. Kim, “Electrical characteristics of heterogeneous polymer layers in PEDOT: PSS films,” Journal of Materials Chemistry C, vol. 6, no. 33, pp. 8906-8913, 2018.
[93] C. H. Gao, X. J. Ma, Y. Zhang, F. X. Yu, Z. Y. Xiong, Z. Q. Wang, and Z. H. Xiong, “84% efficiency improvement in all-inorganic perovskite light-emitting diodes assisted by a phosphorescent material,” RSC advances, vol. 8, no. 28, pp. 15698-15702, 2018.