簡易檢索 / 詳目顯示

研究生: 張淑君
Chang, Shu-Chuh
論文名稱: 空間音效模式化與數位實現之研究
Study of Spatial Audio Modeling and its Digital Implementation
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 87
中文關鍵詞: 三度空間音效空間音效3D 音效虛擬音效
外文關鍵詞: 3D sound, spatial sound, 3D audio, virtual sound
相關次數: 點閱:68下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 3D音效的處理在於使用耳機或是兩個喇叭就可達到有如真實世界的聽覺效果,其主要的技術在於利用頭部轉移函數的運算合成。本論文內容主要探討3D音效的架構和實現。由於3D音效以即時性的處理計算和三度空間的定位效果為主要考量,因此如何建立模型,減少龐大的參數量是首要主要步驟,論文裡提出六種模型討論,這裡可依使用者的需求來選擇,在經探討模擬後會發現效果最好的是Kautz模型。另外由於輸出以耳機和喇叭為主,當使用喇叭播放時,則需要加上反側音消除架構。反側音的非最小相位和因果性都會在論文裡說明改善。最後以高速的數位信號處理器來實現即時3D音效。藉由本論文對3D音效的探討,可以了解如何改善一些限制來達到良好定位的3D音效技術,使之更加逼真完美。

    In this thesis, issues of modeling and crosstalk cancellation of spatial audio system have been studied. Six models have been applied to model the transient and frequency responses of the head-related transfer function (HRTF) using MIT Kemar as the database. In particular, the Kautz filter is proposed as if renders a low complexity in implementation and high fidelity in reproducing spatial audio signals. Crosstalk cancellation using loudspeakers as displays has also been investigated. Technical problems in crosstalk cancellation on non-minimum phase zero, causality have been addressed. The modeling and control approaches are verified using a TI C6701 EVM to assess the performance and complexity.

    中文摘要………………………………………………………… Ⅰ 英文摘要………………………………………………………… Ⅱ 目錄……………………………………………………………… Ⅲ 圖表目錄………………………………………………………… Ⅴ 第一章、緒論…………………………………………………… 1 第二章、3D音效原理…………………………………………… 4 2.1音效處理技術………………………………………… 4 2.1.1 立體音效(Stereo Sound)…………………… 4 2.1.2環繞音效(Surround Sound)………………… 5 2.1.3真實音效(Real Sound)……………………… 6 2.1.4 3D音效(3D Sound)……………………… 7 2.2 3D音源定位機制 …………………………………… 8 2.2.1聽覺心理學(Psychoacoustic)…………… 8 2.2.2 ITD(Interaural Time Differences)…………… 8 2.2.3 IID(Interaural Intensity Differences)………… 11 2.2.4 頭部的遮蔽效應(Head Shadow)…………… 12 2.2.5 耳郭效應(Pinna Effect)…………………… 12 2.2.6 肩膀、軀幹的反射…………………………… 13 2.3頭部轉移函數(Head Related Transfer Function)…… 14 2.3.1 MIT實驗室之HRTF參數…………………… 15 第三章、HRTF模型的建立…………………………………… 16 3.1 FIR模型……………………………………………… 16 3.2 ARX模型…………………………………………… 17 3.3 CAPZ模型 ………………………………………… 19 3.4 狀態空間模型………………………………………… 21 3.5 正交模型(Orthonormal Model)…………………… 24 3.5.1 Laguerre模型………………………………… 28 3.5.1.1 的最佳選擇……………………… 29 3.5.2 Kautz模型 …………………………………… 31 3.5.3 正交模型在ARX架構的應用………………… 32 3.6 模擬結果……………………………………………… 34 3.6.1 FIR模型估測結果 …………………………… 34 3.6.2 ARX模型估測結果 ………………………… 35 3.6.3 CAPZ模型估測結果………………………… 36 3.6.4 狀態空間模型估測結果……………………… 37 3.6.5 Laguerre模型估測結果……………………… 38 3.6.6 Kautz模型估測結果 ………………………… 41 3.6.7 模型估測結果比較…………………………… 43 第四章、3D音效架構與模擬…………………………………… 45 4.1 3D音效的實現………………………………………… 45 4-2 3D音效模擬介面……………………………………… 48 第五章、反側音消除(Crosstalk Cancellation)………………… 51 5.1 喇叭的擺放…………………………………………… 51 5.2 反側音消除架構……………………………………… 53 5.2.1 Forward架構 ………………………………… 56 5.2.2 Feedback架構………………………………… 57 5.2.3 Shuffler Filter架構 …………………………… 58 5.2.4 Gardner架構 ………………………………… 59 5.3 反側音消除過程……………………………………… 61 5.3.1 最小相位……………………………………… 61 5.3.2 頻寬限制……………………………………… 66 5.3.3 因果系統……………………………………… 68 5.3.4 反側音消除模擬結果 ………………………… 69 第六章、數位信號處理器之應用實現 ………………………… 73 6.1 TMS320C6701 EVM功能簡介……………………… 73 6.2 硬體設備……………………………………………… 75 6.3 程式規劃……………………………………………… 78 6.4 實驗結果……………………………………………… 81 第七章、結論 …………………………………………………… 82 參考文獻………………………………………………………… 84

    [1] R. O. Duda, “Modeling head related transfer functions,” in Proc. Twenty-Seventh Annual Asilomar Conference on Signals, Systems and Computer, Asilomar CA, November 1993.
    [2] C. P. Brown and R. O. Duda, “An efficient HRTF model for 3-D sound,” IEEE ASSP Workshop on Application of Signal Processing to Audio and Acoustics, 1997.
    [3] H. Hasegawa, M. Kasuga, S. Matsumoto, and A. Koike, “Binaural sound reproduction using head-related transfer functions(HRTFs) approximation by IIR filter,” IEEE TENCON, pp.150-153, 1999.
    [4] V. Larcher and J. –M. Jot, “Techniques d’interpolation de filters audio-numeriqes. Application a la reproduction spatial des sons sur ecouteurs,” Proc. of the 4th Congress of the French Soc. of Acoust, 1997.
    [5] B. Gardner and K. Martin, “HRTF measurements of a KEMAR dummy-head microphone,” Technical Report 280, MIT Media Lab perceptual Computing, May, 1994.
    [6] B. Gardner and K. Martin, “HRTF measurements of a KEMAR,” Journal of the Acoustical Society in America, vol.97, 1995.
    [7] Alan V. Oppenheim, Ronald W. Schafer and John R. Buck, “Discrete-Time Signal Processing,” Second Edition, Prentice Hall, 1999.
    [8] 趙清風, “控制之系統識別,” 全華科技圖書股份有限公司, 2001.
    [9] P. Kovintavewat, “Modeling the impulse response of an office room,” Charlmers University of Technology, thesis, Sweeden, 1998.
    [10] Y. Haneda, “Common-acoustical-pole and zero modeling of head-related transfer functions,” IEEE Trans. on Speech And Audio Processing, vol. 7, pp. 188-196, Mar. 1999.
    [11] Y. Haneda, “Common-acoustical-pole and residue model and its application to spatial interpolation and extrapolation of a room transfer function,” IEEE Trans. on Speech and Audio Processing, vol. 7, pp.709-717, Nov. 1999.
    [12] Y. Haneda, “Common acoustical pole and zero modeling of room transfer functions,” IEEE Trans. on Speech and Audio Processing, vol. 2, pp.320-328, Apr. 1994.
    [13] A. Gonzalez, M. de Diego, A. Albiol, L. Vergara. , “Improvement of algorithms for control of noise using common acoustical poles of a room,” Proceedings of the 1995 IEEE IECON 21st International Conference on Industrial Electronics, Control, and Instrumentation, vol. 2, pp.824-829, 1995.
    [14] P. Georgious and C. Kyriakakis, “Modeling of head related transfer for immersive audio using a state-space approach,” Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers, vol. 1, pp.720-724, 1999.
    [15] T. Paatero, “Generalized linear-in–parameter models,” Helsinki University, thesis, 2001.
    [16] B. Wahlberg, “System identification using Laguerre models,” IEEE Trans. on Automatic Control, vol. 36, no. 5, May 1991.
    [17] Y. Fu and G. A. Dumont, “An optimum time scale for discrete Laguerre network ,” IEEE Trans. on Automatic Control, vol. 38, no. 6, June 1993.
    [18] B. Wahlberg, “System identification using Kautz models,” IEEE Trans. on Automatic Control, vol. 39, no. 6, June 1994.
    [19] L. S. H. Ngia and F. Gustafsson, “Using Kautz filter for adaptive acoustic echo cancellation,” Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers, vol. 2, pp.1110-1114, 1999.
    [20] H. Brandenstein and U. Unbehauen , “Least-squares approximation of FIR by IIR digital filters,” IEEE Transactions on Signal Processing, vol. 46, no. 1, pp.21-30, 1998.
    [21] W. G. Gardner, “3-D audio using loudspeakers,” Kluwer Academic Publishers, 1998.
    [22] A. Sibbald, “XTCTM crosstalk cancellation,” DEVPC/008/9910/1, www.sensaura.co.uk, 1999.
    [23] A. Sibbald, “Transaural acoustic crosstalk cancellation,” DEVPC/009/9910/1, www.sensaura.co.uk, 1999.
    [24] J. Huopaniemi, “Virtual acoustics and 3-D sound in multimedia signal processing,” Helsinki university, thesis, 1999.
    [25] 王逸如、陳信宏, “數位信號處裡的新利器TMS320C6X,” 全華科技圖書股份有限公司, 2000.
    [26] “TMS320C6201/6701 Evaluation Module Technical Reference,” SPRU305, Texas Instruments, 1998.
    [27] “TMS320C62x/C67x CPU and Instruction Set,” Reference Guide, Texas Instruments, 1998.
    [28] A. Ossadtchi, A. Mouchtaris, and C. Kyriakakis, “Immersive audio rendering and algorithms using the TI C62 EVM board,” Report of Texas Instruments, 1999.
    [29] C. Kyriakakis, P. Tsakalides, and T. Holman, “Surrounded by sound,” IEEE Signal Processing Magazine, January, 1999.
    [30] KEMAR Figure from Home page of R. O. Duda : http://www.engr.sjsu.edu/~duda/Duda.Research.frameset.html.
    [31] B. Wahlberg and P. Lindskog, “Approximate modeling by meas of orthonormal function,” In A. Gombani, B. Di Masi, and A. B. Kurzhansky, editors, Modeling, Estimation and Control of Systems with Uncertainty , pages 449-467. Birkhäuser, 1991 pp.449-463.

    下載圖示 校內:2004-05-24公開
    校外:2006-05-24公開
    QR CODE