簡易檢索 / 詳目顯示

研究生: 吳昀達
Wu, Yun-Ta
論文名稱: 孤立波與潛沒式垂直薄板交互作用之數值研究
Numerical Investigation of Solitary Wave Interaction with a Submerged Vertical Thin Barrier
指導教授: 蕭士俊
Hsiao, Shih-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 125
中文關鍵詞: 孤立波碎波薄板潛堤RANS 模式
外文關鍵詞: Solitary wave, wave breaking, thin barrier, breakwater, RANS model.
相關次數: 點閱:91下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究目的係利用二維數值黏性造波水槽模擬單一孤立波與一潛沒式固定垂直薄板之互制作用,而本文所使用之垂直薄板與水面、水槽底部均可使水流通過。為模擬真實流體運動之情形,本研究所利用之數值模式為求解雷諾平均方程式 (RANS) 與 k-ε 紊流閉合模式,並採用流體體積法 (VOF) 追蹤碎波前後自由液面變化之情形,以期可完整探討波浪與結構物之交互作用。為了減少計算區域與模擬時間,採用Torres-Freyermuth et al. (2010) 所建構之主動式造波邊界,在造波的同時亦可吸收反射波,避免二次反射。為了驗證模式之模擬能力,本文與Yasuda et al. (1997) 研究孤立波與半無限長潛堤之實驗結果做驗證。從模擬結果發現,本文所使用之模式具有相當優越之模擬能力。

    本文藉著改變孤立波之非線性以及垂直薄板擺放之位置進而進行一系列數值實驗。討論主題包括波浪通過潛沒式結構物碎波前後自由液面之變化,渦流之生成與演化,紊流動能強度,壓力場之變化,以及反射率、透射率、能量消散率等將會在內文中詳細加以討論。

    This study presents the numerical results of wave-structure interaction of a solitary wave propagating over a vertical thin and rigid barrier using the two-dimensional volume of fluid (VOF)-type numerical model named COBRAS (COrnell BReaking And Structure). The present numerical model solves the Reynolds Averaged Navier-Stokes (RANS) equations for describing mean flow motion of essentially any Newtonian fluid. The modified k-ε turbulent closure solver for simulating turbulence behaviors is also incorporated. The volume of fluid (VOF) method is used to trace the free surface motion. In this study, the solitary wave is generated through the boundary by specifying both free surface elevation and velocity components. To minimize the computational domain, active wave absorption inflow boundary condition is also included, which allows the inflow boundary for generating desired waves and at the same time absorbing reflected waves (Torres-Freyermuth et al., 2010).

    The model simulation capability is first validated against the laboratory experiments of Yasuda et al. (1997), which focused on breaking solitary waves passing through an impermeable shelf. Comparisons between the experimental data and present numerical results are in good agreements.

    Then, a set of numerical tests is carried out for a solitary wave propagating over a vertical thin barrier with various wave non-linearity (defined as the ratio of incident wave height to water depth) and two types of thin barrier’s setup. In particular, the characteristics of variation of wave reflection, transmission and dissipation due to flow separation and wave breaking, the vortex generation and evolution in the vicinity of thin barrier, and the turbulent kinetic energy (TKE) behavior are summarized and discussed.

    Abstract I 中文摘要 III Acknowledgements IV Contents V List of Tables VII List of Figures VIII List of Symbols XII Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Scope of Present Study 4 Chapter 2 Literature Review 5 2-1 Review of Solitary Wave Theory 5 2-2 Review of Solitary Wave Interaction with Coastal Structure 7 2-3 Review of Waves Interaction with Vertical Thin Barrier 11 2-4 Review of RANS Model Development 14 Chapter 3 Numerical Model 16 3-1 Model Description 16 3-2 Governing Equations 17 3-3 k-ε Turbulent Closure Model 19 3-4 Initial and Boundary Condition 24 3-4-1 Initial Condition 25 3-4-2 Upstream Boundary Condition 26 3-4-3 Downstream Boundary Condition 28 3-4-4 Solid and Free Surface Boundary Condition 29 3-5 Numerical Implementation 30 3-5-1 Two-Step Projection Method 30 3-5-2 Finite-Difference Method 31 3-5-3 Volume of Fluid Method 38 3-5-4 k-ε Equations 43 3-5-5 Computational Cycle 47 3-6 Model Validation 48 3-6-1 Breaking Solitary Wave Interaction with a Shelf 49 Chapter 4 Interaction of Solitary Wave and Vertical Thin Barrier 53 4-1 Numerical Setup 53 4-2 The Process of Wave Breaking 58 4-3 Vortex Shedding and TKE Evolution 72 4-4 The Time of Maximum Force Occurred 93 4-5 Energy Dissipation 101 Chapter 5 Conclusions and Future Works 116 5-1 Concluding Remarks 116 5-2 Future Works 117 Reference 118 Vita 125

    1.Allen, J.E., (1998). The Early History of Solitons (Solitary Waves). Physica Scripta, 57, 436-441.
    2.Chang, K.-A., Hsu, T.-J., Liu, P.L.-F., (2001). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle. Part I: Solitary waves. Coast. Eng., 44, 13–36.
    3.Chorin, A.J., (1968). Numerical solution of Navier-Stokes equations. Math. Comp., 22, 745-762.
    4.Chorin, A.J., (1969). On the convergence of discrete approximations of the Navier-Stokes equations. Math. Comp., 23, 341-353.
    5.Fenton, J., (1972). A ninth-order solution for solitary wave. J. Fluid Mech., 53, 257–271.
    6.Goring, D.G., (1978). Tsunamis- The propagation of long waves onto a shelf. Rep. KH-R-38, California Institute of Technology, Pasadena, CA.
    7.Goring, D.G., Raichlen, F., (1980). The generation of long waves in the laboratory. International Conference on Coast. Eng., ICCE, 763-783.
    8.Goring, D.G., Raichlen, F., (1992). Propagation of Long Waves onto Shelf. J. Waterw. Port Coast. Ocean Eng., 118 (1), 43-61.
    9.Grilli, S.T., Losada, M.A., Martin, F., (1994). Characteristics of solitary wave breaking induced by breakwaters. J. Waterw. Port Coast. Ocean Eng., 120 (1), 74-92.
    10.Grimshaw, R., (1971). The solitary wave in water of variable depth, Part 2. J. Fluid Mech., 46, 611–622.
    11.Hirt, C.W., Nichols, B.D., (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39 (1), 201–225.
    12.Hsiao, S.-C., Lin, T.-C., (2010). Tsunami-like solitary waves impinging and overtopping an impermeable seawall: Experiment and RANS modeling. Coast. Eng., 57(1), 1-18.
    13.Hsu, T.-J., Sakakiyama, T., Liu, P.L.-F., (2002). A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coast. Eng., 46, 25–50.
    14.Huang, C.-J., Dong, C.-M., (2001). On the interaction of a solitary wave and a submerged dike. Coast. Eng., 43, 265-286.
    15.Kothe, D.B., Mjolsness, R.C., Torrey, M.D., (1991). RIPPLE: a new model for incompressible flows with free surface. Rep. LA-12007-MS, Los Alamos National Laboratory.
    16.Kriebel, D.L., (1992). Vertical wave barriers: wave transmission and wave forces. International Conference on Coast. Eng., ICCE, 1313-1326.
    17.Lamb, H., (1932). Hydrodynamics. Cambridge University Press.
    18.Launder, B.E., Reece, G.T., Rodi, W., (1975). Progress in development of a Reynolds stress turbulence closure. J. Fluid Mech., 68, 537-566.
    19.Lee, J.-J., Skjelbreia, E., Raichlen, F., (1982). Measurement of velocities in solitary waves. J. Waterw. Port Coast. Ocean Eng. 108 (WW2), 200–218.
    20.Lemos, C.M., (1992). Wave breaking. Springer-Verlag.
    21.Lin, C., Chang, S.-C., Ho, T.-C., Chang, K.-A., (2006). Laboratory observation of solitary wave propagating over a submerged rectangular dike. J. Eng. Mech., ASCE 132 (5), 545–554.
    22.Lin, C., Ho, T.-C., Chang, S.-C., Hsieh, S.-C., Chang, K.-A., (2005). Vortex shedding induced by a solitary wave propagating over a submerged vertical plate. Int. J. Heat and Fluid Flow, 26, 894–904.
    23.Lin, C.-Y., Huang, C.-J., (2007). Numerical simulation of wave breakings using Particle Level Set Method. J. Coast. and Ocean Eng., 7 (1), 1-19.
    24.Lin, P., (1998). Numerical modeling of breaking waves. Ph.D dissertation, Cornell University, Ithaca, USA.
    25.Lin, P., (2004). A numerical study of solitary wave interaction with rectangular obstacles. Coast. Eng., 51, 35–51.
    26.Lin, P., (2006). Newflume: a numerical water flume for two-dimensional turbulent free surface flows. J. Hydraulic Res., 44 (1), 79-93.
    27.Lin, P., Chang, K.-A., Liu, P.L.-F., (1999). Runup and run-down of solitary waves on sloping beaches. J. Waterw. Port Coast. Ocean Eng., 125 (5), 247–255.
    28.Lin, P., Liu, P.L.-F., (1998a). A numerical study of breaking waves in the surf zone. J. Fluid Mech., 359, 239–264.
    29.Lin, P., Liu, P.L.-F., (1998b). Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res., 103 (C8), 15677–15694.
    30.Liu P.-L.F., Abbaspour M., (1982). Wave scattering by a rigid thin barrier. J. Waterw. Port Coast. Ocean Eng., ASCE, 108, 479-491.
    31.Liu, P.L.-F., Al-banaa, K., (2004). Solitary wave runup and force on a vertical barrier. J. Fluid Mech., 505, 225–233.
    32.Liu, P.L.-F., Cheng, Y., (2001). A numerical study of the evolution of a solitary wave over a shelf. Phys. Fluids, 13 (6), 1660–1667.
    33.Liu, P.L.-F., Lin, P., Chang, K.-A., (1999). Numerical modeling of wave interaction with porous structures. J. Waterw. Port Coast. Ocean Eng., ASCE, 125 (6), 322-330.
    34.Liu, P.L.-F., Synolakis, C.E., Yeh, H., (1991). Report on the international workshop on long wave run-up. J. Fluid Mech., 229, 675–688.
    35.Losada, I.J., Losada, M.A., Roldan, A.J., (1992). Propagation of oblique incident waves past rigid vertical thin barriers. Appl. Ocean Res., 14, 191–199.
    36.Losada, I.J, Losada, M.A, and Losada, R., (1994). Wave spectrum scattering by vertical thin barrier. App. Ocean Res., 16, 123-128.
    37.Losada, M.A., Vidal, C., Medina, R., (1989). Experimental study of the evolution of a solitary wave at an abrupt junction. J. Geophys. Res., 94 (C10), 14557–14566.
    38.Madsen, O.S., Mei, C.C., (1969). The transformation of a solitary wave over an uneven bottom. J. Fluid Mech., 40, 781–791.
    39.Madsen, P.A., Fuhrman, D.R., Schaffer, H.A., (2008). On the solitary wave paradigm for tsunamis. J. Geophys. Res., 113 (C12012), 1-22.
    40.Mei, C.C., (1985). Scattering of solitary wave at abrupt junction. J. Waterw. Port Coast. Ocean Eng., 111 (2), 781-791.
    41.McCowan, J., (1891). On the solitary wave. Philosophy Magazine, 32 (5), 45-58.
    42.Miles, J.W., (1980). Solitary waves. Ann. Rer. Fluid Mech., 12, 11-43.
    43.Munk, W.H., (1949). The solitary wave theory and its application to surf problems. Annals of the New York Academy of Sciences, 51, 376-424.
    44.Rodi, W., (1980). Turbulence Models and Their Application in Hydraulics: a State of the Art Review. International Association for Hydraulic Research, Delft, The Netherlands. 9021270021.
    45.Russell, J.S., (1844). Report on waves. The British Association for the Advancement of Science.
    46.Seabra-Santos, F.J., Renouard, D.P., Temperville, A.M., (1987). Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech., 176, 117–134.
    47.Shih, T.-H., Zhu, J., Lumley, J.L., (1996). Calculation of wall-bounded complex flows and free shear flows. Int. J. Numer. Meth. Fluids, 23 (11), 1133–1144 Dec.
    48.Synolakis, C.E., Bernard, E.N., (2006). Tsunami science before and beyond Boxing Day 2004. Philos. Trans. R. Soc., A364, 2231–2265.
    49.Takagi, K., (1997). Interaction between solitary wave and floating elastic plate" J. Waterw. Port Coast. Ocean Eng., 123 (2), 57-62.
    50.Tang, C.-J., Chang, J.-H., (1998). Flow separation during solitary wave passing over submerged obstacles. J. Hydraulic Eng., 124, 742-749.
    51.Ting, F.C.K., Kirby, J.T., (1995). Dynamics of surf-zone turbulence in a strong plunging breaker. Coast. Eng., 24, 177-204.
    52.Ting, F.C.K., Kirby, J.T., (1996). Dynamics of surf-zone turbulence in a spilling breaker. Coast. Eng., 27, 131-160.
    53.Torres-Freyermuth, A., Lara, J.L., Losada, I.J., (2010). Numerical modelling of short- and long-wave transformation on a barred beach. Coast. Eng., 57 (3), 317-346.
    54.Troch, P., (1997). VOFbreak2: a numerical model for simulation of wave interaction with rubble mound breakwaters. Proc. 27th IAHR Congress, 1366–71.
    55.Ursell, F., (1947). The effect of a fixed barrier on surface waves in deep water. Proc. Camb. Phil. Soc., 43, 374-382.
    56.Wiegel, R.L., (1960). Transmission of waves past a rigid vertical thin barrier. J. Waterw. and Harbors Division, ASCE, 86, 1-12.
    57.Wiegel, R.L., (1964). Oceanographical Engineering. Englewood Cliffs, N.J. Prentice-Hall Inc.
    58.Yasuda, T., Mutsuda, H., Mizutani, N., (1997). Kinematics of overturning solitary waves and their relations to breaker types. Coast. Eng., 29, 317-346.
    59.Zhang, Q., Liu, P.L.-F., (2008). A numerical study of swash flows generated by bores. Coast. Eng., 55, 1113–1134.

    下載圖示 校內:2011-08-06公開
    校外:2012-08-06公開
    QR CODE