簡易檢索 / 詳目顯示

研究生: 沈義評
Shen, Yi-Ping
論文名稱: 前驅物結構對於CZTSe薄膜太陽能電池影響之探討
Influence of precursor structures on CZTSe thin film solar cell
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 80
中文關鍵詞: 銅鋅錫硒薄膜太陽能電池合金真空濺鍍硒化
外文關鍵詞: Cu2ZnSnSe4 (CZTSe), Thin film solar cell, Alloy, Sputtering, Selenization
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主旨係利用不同前驅物結構而後硒化形成銅鋅錫硒CZTSe太陽能電池。研究中之前驅物使用包括利用不同溫度來形成不同結構之銅鋅合金而後鍍錫以及使用不同溫度形成結構不同的銅錫合金後鍍鋅,形成純銅鋅或純銅錫在底層之前驅物,接著再高溫中硒化不同結構之前驅物形成CZTSe層,再利用SEM、XRD、SIMS、Raman、IV measurement以及CV measurement等儀器來量測其吸收層特性以及太陽能電池元件效能。
    本研究發現,在銅鋅合金後鍍錫之前驅物,其銅鋅合金溫度上升時,其銅鋅結構也跟著變化,且鋅比例也隨之下降。硒化後,在高溫合金則因為鋅比例下降而形成Cu2SnSe3(CTSe)。
    而在銅錫合金之前驅物,合金溫度較高時,在硒化過程中其鋅元素較不易和銅錫硒形成CZTSe使得其薄膜較低溫合金薄,此外,其CZTSe薄膜層皆有分層發生,利用SIMS分析,較低層之CZTSe其硒元素有偏低的情形。最後,在前驅物銅錫合金在300ºC時再鍍鋅後硒化後具有較好的效率。其太陽能電池具有Voc=314mV,Isc=22.7mA/cm2,FF=0.53 其效率可達3.78%

    In this study, we produce CZTSe thin film solar cell useing different precursor structures. The precursor structures was fabricated by sputtering CuSn/Zn and CuZn/Sn, respectively. The CuZn CuSn have different structures using different temperature. The absorber was fabricated by selenization at 520ºC 30min. We measure the absorbers and device by using SEM, XRD, SIMS, Raman, I-V, and C-V.
    We found that with alloying temperature rises, CuZn/Sn precursor has different CuZn alloy and the ratio of Zn will decrease. After selenization, higher alloying temperature will form Cu2SnSe3 due to decreasing of Zn.
    At higher alloying temperature, the CuSn/Zn precursor after selenization, the Zn element is not easy to form CZTSe with Cu, Sn and Se. Moreover, we found absorber has two layer, and Se-poor at the lower layer.
    We using CuSn/Zn precursor at alloying temperature 300ºC, then form CZTSe thin film solar cell with Voc=314mV,Isc=22.7mA/cm2,FF=0.53 and its efficiency can reach 3.78%.

    摘要 I Abstract II 致謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 太陽能電池簡介 1 1-2 單晶矽太陽能電池 2 1-3 薄膜太陽能電池 2 1-4 CZTSe太陽能電池 2 第二章 理論基礎 4 2-1 半導體 4 2-2 接面特性 5 2-2-1 P-N接面 5 2-2-2 空乏電容及載子濃度分佈 7 2-2-3 異質接面 8 2-2-4 金屬半導體接觸 9 2-3 太陽能電池原理 11 2-3-1 原理 11 2-3-2 轉換效率 13 2-3-3 量子效率 16 2-4 銅鋅錫硒(CZTSe)太陽能電池文獻回顧 17 2-4-1 材料特性與製程方式 17 2-4-2 合金前驅物之結構 19 2-4-3 元素比例及二次相 21 2-4-4 CZTSe反應生成路徑 22 2-4-5 CZTSe太陽能電池研究發展及目前較佳效率之研究團隊 23 2-5 研究動機 24 第三章 實驗方法 25 3-1 CZTSe太陽能電池結構簡介 25 3-1-1 基板 25 3-1-2 背電極 25 3-1-3 吸收層 26 3-1-4 緩衝層 26 3-1-5 前電極 26 3-2 實驗流程 27 3-2-1 實驗流程架構 27 3-2-2 鉬基板準備與清洗 27 3-2-3 銅鋅錫前驅物製備 28 3-2-4 硒化爐管製程 28 3-2-5 緩衝層硫化鎘(CdS)製備 28 3-2-6 透明導電模製備 28 3-2-7 金屬導電電極製備 28 3-3設備儀器介紹 29 3-3-1 X-ray 繞射儀(XRD) 29 3-3-2 掃描式電子顯微鏡(SEM) 29 3-3-3 二次離子質譜儀(SIMS) 30 3-3-4 拉曼光譜分析(Raman Spectroscopy) 31 3-3-5 電流電壓特性量測(I-V measurement) 32 3-3-6 電容電壓特性量測(C-V measurement) 32 3-3-7 外部量子效率量測(EQE) 32 第四章 結果與討論 33 4-1 銅鋅合金鍍錫(CZ/T)前驅物對於CZTSe薄膜之探討 33 4-1-1 銅鋅合金後鍍錫(CZ/T)前驅物之討論 34 4-1-2 銅鋅合金鍍錫(CZ/T)硒化後之材料特性分析 38 4-1-3 結論 48 4-2銅錫合金鍍鋅(CT/Z)前驅物對於CZTS薄膜之探討 49 4-2-1 銅錫合金後鍍鋅(CT/Z)之前驅物變化討論 50 4-2-2 銅錫合金鍍鋅(CT/Z)硒化後之材料特性分析 54 4-2-3 銅錫合金鍍鋅(CT/Z)對CZTSe元件之光電特性分析 63 4-2-4 結論 70 第五章 總結及未來規劃 72 5-1 總結 72 5-2 未來規劃 72 參考文獻 74

    [1] D. Lidgate, “Green energy?,” Engineering Science and Education Journal, vol. 1 pp.221-227, 1992
    [2] E. Becquerel, “Mémoire sur les effets électriques produits sous l'influence des rayons solaires,” Comptes Rendus des Séances Hebdomadaires, vol 9, pp.561-567, 1839
    [3] D. M. Chapin, C. S. Fuller and G. L. Pearson “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, vol. 25, pp.676, 1954
    [4] D. C. Reynolds, G. Leies, L. L. Antes, and R. E. Marburger, “Photovoltaic Effect in Cadium Sulfide,” Physical Review, vol. 96, pp.533, 1954
    [5] K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-Film Solar Cells: An Overview,” Prog. Photovolt: Res. Appl. vol. 12. pp.69-92, 2004
    [6] C. Wadia, “Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment,” Environmental Science & Technology, vol. 43, pp2072-2077, 2009
    [7] M. P. Suryawanshi, G. L. Agawane, S. M. Bhosale, S. W. Shin, P. S. Patil, J. H. Kim and A. V. Moholkar, “CZTS based thin film solar cells: a status review,” Materials Technology. vol. 28, pp.98-109, 2013
    [8] S. M. Sze, “Physics of Semiconductor Devices,” New York, 1981
    [9] A. L. Fahrenbruch, “Fundamental of Solar Cells: Photovoltaic Solar Energy Conversion,” Academic Press, 1993
    [10] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Manna, W. C. Hsu, A. Goodrich, R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Solar Energy Materials and Solar Cells, vol 101, pp.154-159, 2012
    [11] S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, “Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights,” Applied Physics Letters, vol. 94, pp.041903, 2009
    [12] R. A. Wibowo, W. S. Kim, E. S. Lee, B. Munir, K. H. Kim, “Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets,” Journal of Physics and Chemistry of Solids vol. 68, pp.1908-1913, 2007
    [13] X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, “A Review on Development Prospect of CZTS Based Thin Film Solar Cells,” International Journal of Photoenergy vol. 2014, 2014
    [14] G. Y. Kim, A. R. Jeong, J. R. Kim, W. Jo, D.H. Son, D. H. Kim, J. K. Kang, “Surface potential on grain boundaries and intragrains of highly efficient Cu2ZnSn(S,Se)4 thin-films grown by two-step sputtering process,” Solar Energy Materials and Solar Cells vol. 127, pp.129-135, 2014
    [15] A.V. Moholkar, S.S. Shinde, G.L. Agawane, S.H. Job, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, “Studies of compositional dependent CZTS thin film solar cells by pulsed laser deposition technique: An attempt to improve the efficiency,” Journal of Alloys and Compounds vol. 544, pp.145-151, 2012
    [16] X. Zeng, K. F. Tai, T. Zhang, C. W. J. Ho, X. Chen, A. Huan, T. C. Sum, L. H. Wong, “Cu2ZnSn(S,Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization,” Solar Energy Materials and Solar Cells vol. 124, pp.55-60, 2014
    [17] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey and Supratik Guha,”Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber,” Progress in Photovoltaics: Research and Applications vol. 21, pp.72-76, 2013
    [18] S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov and David B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Energy & Environmental Science, vol. 5, pp.7060-7065, 2012
    [19] S. Delbos, “Kesterite thin films for photovoltaics: a review,” EPJ Photovoltaics, pp.335004, 2012
    [20] S. Chen, A. Walsh, X. G. Gong, and S. H. Wei ,”Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers,” Advanced Materials, 25, 1522–1539, 2013
    [21] W. Albers, D. Verberkt, “The SnSe-SnSe2 Eutectic; a P-N Multilayer Structure” Journal of Materials Science 5, 24-28, 1970
    [22] H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Largebandgap SiC, IIIV nitride, and IIVI ZnSe based semiconductor device technologies,” Journal of Applied Physics 76 (3), 1994
    [23] H. Yoo, R. A. Wibowo, A. Hölzing, R. Lechner, J. Palm, S. Jost, M. Gowtham, F. Sorin, B. Louis and R. Hock, “Investigation of the solid state reactions by time-resolved X-ray diffraction while crystallizing kesterite Cu2ZnSnSe4 thin films,” Thin Solid Films Vol 535, Pages 73–77, 2013
    [24] C. M. Fella, A. R. Uhl, C. Hammond, I. Hermans, Y. E. Romanyuk, A. N. Tiwari “Formation mechanism of Cu2ZnSnSe4 absorber layers during selenization of solution deposited metal precursors,” Journal of Alloys and Compounds, Vol 567, Pages 102–106, 2013
    [25] R. A. Wibowo, S. A. Moeckel, H. Yoo, C. Hetzner , A. Hoelzing, P. Wellmann, R. Hock, “Intermetallic compounds dynamic formation during annealing of stacked elemental layers and its influences on the crystallization of Cu2ZnSnSe4 films,” Materials Chemistry and Physics 142, 311-317, 2013
    [26] R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voβ, J. Schulze, A. Kirbs, A. Ennaoui, M. Lux-Steiner, A. Weber, I. Kötschau, H.W. Schock, “The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu_Zn_Sn precursors,” Thin Solid Films 517 2465–2468, 2009
    [27] McKinley, J.D. and J.E. Vance, “The Vapor Pressure of Zinc between 150º and 350ºC.” The Journal of Chemical Physics, 22(6): p. 1120-1124, 1954
    [28] Chou, C.Y. and S.W. Chen, “Phase equilibria of the Sn-Zn-Cu ternary system.” Acta Materialia, 54(9): p. 2393-2400. 2006.
    [29] A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.-W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, A. Kirbs “Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective” Thin Solid Films
    Vol 517, Pages 2511–2514 2009
    [30] 吳世雄, “濺鍍製備CIGS太陽能電池及特性分析”,國立成功大學, 2010
    [31] H. Zhou, T. B. Song, W. C. Hsu, S. Luo, S. Ye, H. S. Duan, C. J. Hsu, W. Yang, and Y. Yang, “Rational Defect Passivation of Cu2ZnSn(S,Se)4 Photovoltaics with Solution-Processed Cu2ZnSnS4:Na Nanocrystals,” Journal of the American Chemical Society, 135, 15998−16001, 2013
    [32] K. Ito and T. Nakazawa “Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films,” Japanese Journal of Applied Physics. 27 2094, 1988
    [33] T. M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, and H. W. Schock, “Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films,” Proceedings of the 14th European Photovoltaic Solar Energy Conference. 1997
    [34] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima “Development of thin film solar cell based on Cu2ZnSnS4 thin films” Solar Energy Materials and Solar Cells, Vol 65, Issues 1–4, Pages 141–148, 2001
    [35] T. KOBAYASHI, K. JIMBO, K. TSUCHIDA, S. SHINODA, T. OYANAGI and H. KATAGIRI “Investigation of Cu2ZnSnS4-Based Thin Film Solar Cells Using Abundant Materials” Japanese Journal of Applied Physics Vol. 44, No. 1B, pp. 783–787, 2005
    [36] M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, M. Krunks, T. Varema and E. Mellikov, “Cu2ZnSnSe4 Monograin Powders for Solar Cell Application,” Photovoltaic Energy Conversion, Vol 1, 2006
    [37] K. MORIYA, K. TANAKA, and H. UCHIKI,“Fabrication of Cu2ZnSnS4 Thin-Film Solar Cell Prepared by Pulsed Laser Deposition” Japanese Journal of Applied Physics. 46 5780, 2007
    [38] K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi, H. Katagiri, “Cu2ZnSnS4-type thin film solar cells using abundant materials,” Thin Solid Films Vol 515, Issue 15, Pages 5997–5999, 2007
    [39] M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov “Cu2Zn1–xCdxSn(Se1–ySy)4 solid solutions as absorber materials for solar cells,” physica status solidi (a), 205, No. 1, 167–170, 2008
    [40] G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg and L. M. Peter “Cu2ZnSnSe4 Thin Film Solar Cells Produced by Selenisation of Magnetron Sputtered Precursors,” Progress in Photovoltaics: Research and Applications. 17:315–319,2009
    [41] T. K. Todorov, K. B. Reuter, and D. B. Mitzi “High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber” Advanced. Material. 22, E156–E159, 2010
    [42] W. Wang , M. T. Winkler , O. Gunawan , T. Gokmen , T. K. Todorov , Y. Zhu , and D. B. Mitzi “Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency,” Advanced Energy Material. 4, 1301465, 2014
    [43] H. Yoo, R.A. Wibowo, A. Hölzing, R. Lechner, J. Palm, S. Jost, M. Gowtham, F. Sorin, B. Louis, R. Hock “Investigation of the solid state reactions by time-resolved X-ray diffraction while crystallizing kesterite Cu2ZnSnSe4 thin films,” Thin Solid Films,
    Vol 535, Pages 73–77, 2013
    [44] M. Ganchev , J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, E. Mellikov, “Phase composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films,
    Vol 519, Pages 7394–7398, 2011
    [45] S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Applied Physics Letters, 97, 021905, 2010
    [46] G. Marcano, C. Rincón, S.A. López, G. Sánchez Pérez, J.L. Herrera-Pérez, J.G. Mendoza-Alvarez, P. Rodríguez, “Raman spectrum of monoclinic semiconductor Cu2SnSe3,” Solid State Communications Vo 151, Issue 1, Pages 84–86, 2011
    [47] Y. Li, Q. Han, W. Shi, “The study of annealing process for CZTSSe under extra chalcogen vapor pressure,” Chalcogenide Letters Vol. 11, No. 4, p167-174, 2014
    [48] O. Volobujeva, E. Mellikov, J. Raudoja, M.Grossberg, S.Bereznev, M. Altosaar, R.Traksmaa, “SEM analysis and selenization of Cu–Zn-Sn sequential films produced by evaporation of metals,” Optoelectronic and Microelectronic Materials and Devices, 2008
    [49] C. K. Miskin, W. C. Yang, C. J. Hages, N. J. Carter, C S. Joglekar, E. A. Stach and R. Agrawal, “9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks,” Progress in Photovoltaics: Research and Applications, 2014
    [50] H. Hiroi, J. Kim, M. Kuwahara, T. K Todorov, D. Nair, M. Hopstaken, Y. Zhu, O. Gunawan, D. B. Mitzi and H. Sugimoto, “Over 12% Efficiency Cu2ZnSn(SeS)4 Solar Cell Via Hybrid Buffer Layer,” Photovoltaic Specialist Conference, 2014

    下載圖示 校內:2016-12-16公開
    校外:2016-12-16公開
    QR CODE