| 研究生: |
郭杰璋 Kuo, Chieh-Chang |
|---|---|
| 論文名稱: |
應用水位及流量為變量之淺水模式模擬綠島尾流 Numerical Simulation on Green Island Wake Based on Surface Elevation and Flux Variables in Shallow-Water Model |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 綠島尾流 、黑潮 、淺水方程式 、渦街 、八點網格 |
| 外文關鍵詞: | Green Island Wake, Kuroshio, Shallow Water Equations (SWEs), Vortex Street, Eight-Node Quadrilateral Element |
| 相關次數: | 點閱:185 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用以流量驅動之二維水深平均淺水模式 (Shallow-Water Model, SWM),模式驗證係於渠道中放置一障礙物衍生渦街特性,與理論分析呈現合理之一致性。本模式應用於黑潮流場與綠島尾流之模擬。前人研究多以流速驅動SWM來模擬海洋水動力,謝 (2014) 與周 (2015) 曾以流速驅動之SWM模擬季風和颱風對於黑潮流場與綠島尾流之影響,其計算結果之水位值過大不符實際現象,使用流量驅動在控制方程式中能遵守質量守恆,但其缺點在於若流量太大時計算不穩定,且模式相對於使用流速驅動較難收斂求解。本文先以渠道中的障礙物為例計算不同的雷諾數與史特豪數之關係是否合乎經驗公式 (Williamson and Brown, 1998),使用網格為最小平方有限元素法搭配八點四邊形網格。接著以流速驅動之SWM使用相同條件計算同樣案例並互相比對,經與理論校驗後證明以流量驅動所計算之渦街是合理的。
接著本模式應用於黑潮衍生綠島尾流之簡單情況模擬,使用平底床模擬,故數值模擬結果與流速驅動之結果比較發現差異不大,待模式發展完善後人模擬真實底床應能展現兩者差異。
A shallow-water model (SWM) based on shallow water equations (SWEs) using surface elevation and fluxes (η, qx, qy) as variables (Wang and Connor, 1975) was developed. Theoretical formulation is performed on the basis of the depth-averaged SWEs. Least-squares method with eight-node quadrilateral finite-element for space interpolations and theta-method for time integration are used to develop the SWM. SWM was applied to the case of flow past a flat channel. Numerical results are fairly compared with results obtained by the SWM using surface elevation and depth-averaged velocities (η, u, v) as variables. Numerical results of SWM based on (η, qx, qy) apparently show better accuracy and flux conservation than those based on the variable (η, u, v) of SWM.
The SWM is then utilized to study Green Island wakes induced by the Kuroshio. Characteristics of the downstream vortex, such as the aspect ratio and period, are examined and compared with results of obtained by the variable (η, u, v) of SWM in previous study. However we still need to fix the open boundary condition, the water depth is limited only in 10 m and velocity lower than 0.5 m/s, comparing to previous study setting that water depth is 360 m and velocity is 1.0 m/s. Finally we discuss the vortex street in the case of water depth 10 m and flux 5 m2/s.
1. Chang, M. H., Tang, T. Y., Ho, C. R., & Chao, S. Y. (2013). Kuroshio‐induced wake in the lee of Green Island off Taiwan. Journal of Geophysical Research: Oceans, 118(3), 1508-1519.
2. Chen, F. (2013). The Kuroshio power plant (Vol. 225). Springer.
3. Chen, F. (2010). Kuroshio power plant development plan. Renewable and Sustainable Energy Reviews, 14(9), 2655-2668.
4. Chaudhry, M. H. (2007). Open-channel flow. Springer Science & Business Media.
5. Coutanceau, M. and Bouard, R., 1977. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform transition. Part I: steady flow. Journal of Fluid Mechanics, 79(2), 231–256.
6. Ding, Y. and Kawahara, M., 1999. Three-dimensional linear stability analysis of incompressible viscous flows using the finite element method. International Journal for Numerical Methods in Fluids, 31(2), 451–479.
7. Dennis, S.C.R. and Chang, G.Z., 1970. Numerical solution for steady flow past a circular cylinder at Reynolds number up to 100. Journal of Fluid Mechanics, 42(3), 471–489.
8. Feltkamp, M. C., Vreugdenhil, G. R., Vierboom, M. P., Ras, E., van der Burg, S. H., Schegget, J. T., ... & Kast, W. M. (1995). Cytotoxic T lymphocytes raised against a subdominant epitope offered as a synthetic peptide eradicate human papillomavirus type 16‐induced tumors. European journal of immunology, 25(9), 2638-2642.
9. Hsu, T. W., Chou, M. H., Hou, T. H., & Liang, S. J. (2015). Typhoon effect on Kuroshio and Green Island wake: a modelling study. Ocean Science Discussions, 12, 3199-3233.
10. Hsu, T. W., Doong, D. J., Hsieh, K. J., & Liang, S. J. (2015). Numerical Study of Monsoon Effect on Green Island Wake. Journal of Coastal Research, 31(5), 1141-1150.
11. Hsu, T.-W., Liau, J.-M., Liang, S.-J., Tzang, S.-Y., & Doong, D.-J. (2015). Assessment of Kuroshio current power test site of Green Island, Taiwan. Renewable Energy, 81(0), 853-863. doi: http://dx.doi.org/10.1016/j.renene.2015.03.089.
12. Huang, S.-J., Ho, C.-R., Lin, S.-L., & Liang, S.-J. (2014). Spatial-temporal scales of Green Island wake due to passing of the Kuroshio current. International Journal of Remote Sensing, 35(11-12), 4484-4495.
13. Jiang, B. N. (1998). The Least-Squares Finite Element Method: theory and applications in computational fluid dynamics and electromagnetics: Springer Science & Business Media.
14. J. D. Wang and J. J. Connor, “Mathematical modeling of Near Coastal Circulation”, Massachusetts Institute of Technology, Report No. MITSG 75-13, 1975.
15. Liang, S.-J., Kuo, N.-J., Doong, D.-J., & Hsu, T.-W. (2014). Numerical study of wind effect on green island wake. Paper presented at the OCEANS 2014-TAIPEI.
16. Liang, S.-J., Lin, C.-Y., Hsu, T.-W., Ho, C.-R., & Chang, M.-H. (2013). Numerical study of vortex characteristics near Green Island, Taiwan. Journal of coastal Research, 29(6), 1436-1444.
17. Liang, S.-J., Lan, C.-Y., & Chen, Y.-C. (2012). Shallow water flow modeling using space-time least-squares finite-element method. Journal of Marine Science and Technology, 20(5), 595-602.
18. Liang, S.-J., & Hsu, T.-W. (2009). Least-squares finite-element method for shallow-water equations with source terms. Acta Mechanica Sinica, 25(5), 597-610.
19. Liang, S.-J. (2008). A least-squares finite-element method for shallow-water equations. Paper presented at the OCEANS 2008-MTS/IEEE Kobe Techno-Ocean.
20. Schär, C., & Durran, D. R. (1997). Vortex formation and vortex shedding in continuously stratified flows past isolated topography. Journal of the atmospheric sciences, 54(4), 534-554.
21. Schär, C., & Smith, R. B. (1993). Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. Journal of the atmospheric sciences, 50(10), 1373-1400.
22. Schär, C., & Smith, R. B. (1993). Shallow-water flow past isolated topography. Part II: Transition to vortex shedding. Journal of the atmospheric sciences, 50(10), 1401-1412.
23. Sommerfeld, A. (1964). Mechanics of Deformable Bodies (Academic, New York, 1964). Chap. IV.
24. Thompson, E. G. (2004). An introduction to the finite element method. John Wiley,.
25. Williamson, C. H. K., & Brown, G. L. (1998). A series in 1/√ Re to represent the Strouhal–Reynolds number relationship of the cylinder wake. Journal of Fluids and Structures, 12(8), 1073-1085.
26. Wang, J. D., Connor, J. J., & Ralph M. Parsons laboratory for water resources and hydrodynamics. (1975). Mathematical modeling of near coastal circulation (No. 13). Cambridge: Massachusetts Institute of Technology.
27. Young, G. S., & Zawislak, J. (2006). An observational study of vortex spacing in island wake vortex streets. Monthly weather review, 134(8), 2285-2294.
28. Yaosong, C., Guangyuan, Z., & Jie, G. (1990). An adaptive open boundary condition. Acta Mechanica Sinica, 6(4), 305-310.
29. Graf, W. H., & Yulistiyanto, B. (1998). Experiments on flow around a cylinder; the velocity and vorticity fields. Journal of Hydraulic Research, 36(4), 637-654.
30. 周孟賢(2015),「颱風對綠島尾流影響之數值研究」,國立成功大學水利及海洋工程研究所碩士論文。
31. 謝鎧駿(2014),「黑潮流經綠島所產生之島後渦漩空間與時間尺度數值分析」,國立臺灣海洋大學海洋環境資訊研究所碩士論文。
32. 林聖霖(2013),「黑潮流經綠島所產生島後渦漩之數值分析」,國立臺灣海洋大學海洋環境資訊研究所碩士論文。
33. 蔡孟峯(2012),「綠島島嶼尾流渦漩特性之數值研究」,國立臺灣海洋大學海洋環境資訊研究所碩士論文。