簡易檢索 / 詳目顯示

研究生: 蘇志文
Su, Chih-Wen
論文名稱: 後處理對於無鉛鈮酸鈉鉀薄膜特性之影響應用於非揮發性鐵電記憶體之研究
Study of the Effects of Post-Treatment on the Characteristics of (Na0.5K0.5)NbO3 –Based Films for the Applications of Nonvolatile Ferroelectric Random Access Memory
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 117
中文關鍵詞: 鐵電記憶體無鉛鈮酸鈉鉀溶膠凝膠法後處理
外文關鍵詞: FeRAM, Lead free, (Na, K)NbO3, Sol-gel, Post-treatment
相關次數: 點閱:80下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用溶膠凝膠法在鍍有Pt下電極之矽基板上成長無鉛非當量鈮酸鈉鉀薄膜(NKN-based),透過不同RTA退火溫度及高溫爐溫度調控,搭配XRD、XRR、SEM、XPS、J-E、εr、tanδ、室溫P-E及變溫P-E等量測,試圖找出較有利於鐵電記憶體的製程溫度條件,並且利用額外摻雜適量Li元素進入NKN結構的方式,改善薄膜之微結構並提升其電特性,進一部探討對於鐵電記憶體之影響。
    從本研究可知,隨著RTA退火溫度逐漸提高,特性有所提升,主要是因為薄膜結晶性變好、緻密性變高,而當RTA溫度達 750 oC並利用高溫爐燒結800 oC後,可以獲得最佳的電特性如下,漏電流:7.64 × 10-10 A/cm2 (0 kV/cm)、4.30 × 10-8 A/cm2 (100 kV/cm),介電常數:776 (100 kHz),介電損耗:0.04 (100 kHz);室溫電滯曲線量測之殘餘極化量最高達8.2 μC/cm2 (±400 kV/cm),memory window最大為372 kV/cm (亦為3.72 V),此外經過約108次循環量測都沒有明顯的特性損耗;疲勞特性量測發現在實際工作環境下(<100 oC),NKN材料穩定性良好,仍可達約106次循環。
    另外,藉著添加少量的Li,填補鈉鉀高溫下揮發的空缺,提升薄膜電特性如下,漏電流降低至1.24 × 10-10 A/cm2 (0 kV/cm)、3.90 × 10-8 A/cm2 (100 kV/cm),100 kHz下之介電常數及介電損耗分別提升至786、降低至0.02;室溫下量測之電滯曲線殘餘極化量提升至11.8 μC/cm2 (±400 kV/cm),memory window提升至393 kV/cm (亦為3.93 V),循環量測次數也提升至約3×108次;疲勞特性量測相較於NKN,在<100 oC下之穩定性有提升,可達約107次循環。

    In this research, lead-free (Na, K)NbO3-based (NKN-based) thin films were fabricated on Pt/TiO2/SiO2/Si substrates via a sol-gel processing method, and through the control of various RTA annealing temperature and high-temperature furnace temperature in process. With the measurement of XRD, XRR, SEM, XPS, J-E, εr, tanδ, room temperature P-E curve and variable temperature P-E curve, we tried to find more favorable conditions of the processing temperature for the ferroelectric memory. Others, it was found that the thin film microstructure improved and the electrical properties enhanced after adding the additional right amount of lithium element into NKN structure. In the optimum post-treatment temperature control, RTA:750 oC and furnace:800 oC, the leakage current was reduced to 1.24 × 10-10 A/cm2 (0 kV/cm), 3.90 × 10-8 A/cm2 (100 kV/cm), and the dielectric constant raised up to 786 and the dielectric loss decreased to 0.02, respectively under 100 kHz. The electrical measurements at room temperature hysteresis curve of residual polarization increased to 11.8 μC/cm2 (±400 kV/cm), memory window up to 393 kV/cm (also 3.93 V), the switching cycles also increased to about 3 × 108 times. The fatigue characteristics at <100 oC, the stability raised up to about 107 cycles compared to NKN.

    摘要 I Extended Abstract II 誌謝 XVII 目錄 XVIII 表目錄 XXII 圖目錄 XXIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 論文架構 3 第二章 文獻回顧與理論基礎 4 2-1 記憶體 5 2-2 鐵電材料 8 2-2-1 鐵電薄膜於鐵電記憶體的發展 10 2-2-2 鐵電記憶體之應用需求 17 2-2-3 鐵電特性(電滯效應) 18 2-2-4 特性簡介 21 2-2-4-1 介電極化 21 2-2-4-2 極化機制 22 2-2-5 漏電流機制 23 2-2-6 元件可靠度 25 2-2-6-1 疲勞效應(fatigue effect) 25 2-2-6-2 保持性(retention) 25 2-2-6-3 時效性介電崩潰(Time Dependent Dielectric Breakdown, TDDB) 26 2-3 電極材料選用及鍍製 27 2-3-1 電極材料選用 27 2-3-2 電極材料鍍製 27 2-3-2-1 濺鍍原理 27 2-3-2-2 射頻濺鍍(RF Sputtering) 28 2-4 溶膠凝膠法 31 2-4-1 溶膠凝膠法原理 31 2-4-2 製程步驟 31 2-4-2-1 前驅物溶液之調配 32 2-4-2-2 薄膜於基板上之塗佈 33 2-4-2-3 低溫焦化處理 35 2-4-2-4 高溫退火結晶 35 第三章 實驗步驟和量測 36 3-1 實驗流程 36 3-2 鈮酸鈉鉀(Na, K)NbO3薄膜沉積 37 3-2-1 基板清洗步驟 37 3-2-2 下電極沉積 38 3-2-3 前驅物溶液配置 39 3-2-4 塗佈NKN薄膜及熱退火處理 39 3-3 量測儀器 41 3-3-1 低掠角薄膜X光繞射儀(Grazing Incidence Thin Film X-ray Diffractometer, XRD) 42 3-3-2 X光反射率(X-Ray Reflectometry, XRR) 44 3-3-3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 45 3-3-4 X光光電子能譜儀(X-ray Photoelectron Spectrometer, XPS) 47 3-3-5 半導體參數分析儀(Semiconductor Parameter Analyzer) 48 3-3-6 精密阻抗分析儀(Precision Impedance Analyzer) 49 3-3-7 精密鐵電/多鐵測試儀(Precision Multiferroic Tester) 50 第四章 結果與討論 51 4-1 RTA持溫時間之選擇 52 4-1-1 XRD分析 53 4-1-2 SEM分析 55 4-2 不同RTA溫度對非當量NKN薄膜的微結構與電性之影響 56 4-2-1 XRD分析 56 4-2-2 XRR分析 58 4-2-3 SEM分析 61 4-2-4 XPS分析 64 4-2-5 漏電流分析(J-E curve) 72 4-2-6 介電常數(εr)及介電損耗(tanδ)分析 75 4-2-7 電滯曲線分析(P-E curve) 79 4-2-7-1 室溫電滯曲線(room temperature hysteresis loops) 79 4-2-7-2 變溫電滯曲線(variable temperature hysteresis loops) 82 4-2-8 小結 85 4-3 不同RTA溫度對非當量LNKN薄膜的微結構與電性之影響 86 4-3-1 XRD分析 86 4-3-2 XRR分析 88 4-3-3 SEM分析 90 4-3-4 XPS分析 92 4-3-5 漏電流分析(J-E curve) 94 4-3-6 介電常數(εr)及介電損耗(tanδ)分析 96 4-3-7 電滯曲線分析(P-E curve) 99 4-3-7-1 室溫電滯曲線(room temperature hysteresis loops) 99 4-3-7-2 變溫電滯曲線(variable temperature hysteresis loops) 101 4-3-8 小結 103 第五章 結論與未來展望 104 5-1 結論 104 5-2 未來展望 105 參考文獻 106

    [1] G. H. Haertling, "Ferroelectric thin films for electronic applications," Journal of Vacuum Science & Technology A, vol. 9, pp. 414-420, 1991.
    [2] C.-R. Cho, J.-H. Koh, A. Grishin, S. Abadei, and S. Gevorgian, "Na0.5K0.5NbO3/SiO2/Si thin film varactor," Applied Physics Letters, vol. 76, pp. 1761-1763, 2000.
    [3] C.-R. Cho and A. M. Grishin, "Ferroelectric Na0.5K0.5NbO3/SiO2/Si thin film structures for nonvolatile memory," in Materials Science of Novel Oxide-Based Electronics, April 24, 2000 - April 27, 2000, San Francisco, CA, United states, 2000, pp. 155-160.
    [4] C.-R. Cho and B.-M. Moon, "(Na,K)NbO3 Thin Films Using Metal-Organic Chemical Vapor Deposition," Integrated Ferroelectrics, vol. 45, pp. 39-48, 2002.
    [5] H. J. Lee, C. W. Ahn, S. H. Kang, I. W. Kim, J. S. Lee, and B. M. Jin, "The ferroelectric properties of (Na0.5K0.5)NbO3 thin films fabricated by rf-magnetron sputtering," Ferroelectrics, vol. 335, pp. 227-232, 2006.
    [6] X.-S. Li, K. Yamashita, T. Tanaka, Y. Suzuki, and M. Okuyama, "Structural and electrical properties of highly oriented Pb(Zr,Ti)O3 thin films deposited by facing target sputtering," Sensors and Actuators A: Physical, vol. 82, pp. 265-269, 2000.
    [7] F. Soderlind, P.-O. Kall, and U. Helmersson, "Sol-gel synthesis and characterization of Na0.5K0.5NbO3 thin films," Journal of Crystal Growth, vol. 281, pp. 468-474, 2005.
    [8] C.-R. Cho, S.-H. Park, B.-M. Moon, J. Sundqvist, A. Harsta, and A. Grishin, "Na0.5K0.5NbO3 thin films for MFIS_FET type non-volatile memory applications," Integrated Ferroelectrics, vol. 49, pp. 21-30, 2002.
    [9] C. H. Yang, H. T. Sui, G. Wang, F. J. Geng, and C. Feng, "Structural, ferroelectric, and dielectric properties of bilayered Na0.5Bi0.5(Ti0.98Zr0.02)O3/Na0.5Bi0.5(Ti0.98Fe0.02)O3 thin films prepared by metal organic decomposition," Ceramics International, vol. 41, pp. 859-863, 2014.
    [10] Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, et al., "Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy," Applied Physics Letters, vol. 81, pp. 4401-4403, 2002.
    [11] T. Tybell, C. H. Ahn, and J.-M. Triscone, "Control and imaging of ferroelectric domains over large areas with nanometer resolution in atomically smooth epitaxial Pb(Zr0.2Ti0.8)O3 thin films," Applied Physics Letters, vol. 72, pp. 1454-1456, 1998.
    [12] P. Chin Goh, K. Yao, and Z. Chen, "Lithium diffusion in (Li, K, Na)NbO3 piezoeletric thin films and the resulting approach for enhanced performance properties," Applied Physics Letters, vol. 99, p. 092902, 2011.
    [13] F. Fu, B. Shen, J. Zhai, Z. Xu, and X. Yao, "Electrical properties of Li doped sodium potassium niobate thick films prepared by a tape casting process," Journal of Alloys and Compounds, vol. 509, pp. 7130-7133, 2011.
    [14] X. D. Wu, A. Inam, M. S. Hegde, B. Wilkens, C. C. Chang, D. M. Hwang, et al., "High critical currents in epitaxial YBa2Cu3O7−x thin films on silicon with buffer layers," Applied Physics Letters, vol. 54, pp. 754-756, 1989.
    [15] C.-R. Cho and A. Grishin, "Self-assembling ferroelectric Na0.5K0.5NbO3 thin films by pulsed-laser deposition," Applied Physics Letters, vol. 75, pp. 268-268, 1999.
    [16] S. C. Witczak, J. S. Suehle, and M. Gaitan, "An experimental comparison of measurement techniques to extract Si-SiO2 interface trap density," Solid-State Electronics, vol. 35, pp. 345-355, 1992.
    [17] Y. Kato, Y. Kaneko, H. Tanaka, K. Kaibara, S. Koyama, K. Isogai, et al., "Overview and future challenge of ferroelectric random access memory technologies," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 46, pp. 2157-2163, 2007.
    [18] 高士, "快閃IC「RRAM」發展動向--非揮發性記憶體明日之星," 零組件雜誌, vol. 167, pp. 78-82, 2005.
    [19] 劉勁麟, "氧化物電極上製備鐵電記憶體應用之PZT薄膜的研究," 博士, 材料科學工程學系, 國立清華大學, 新竹市, 2002.
    [20] Y. Xu, "1 - Introduction: characteristics of ferroelectrics," in Ferroelectric Materials and their Applications, ed Amsterdam: Elsevier, 1991, pp. 1-36.
    [21] B. Jaffe, Piezoelectric Ceramics: Elsevier Science, 2012.
    [22] Y. Guo, K. I. Kakimoto, and H. Ohsato, "Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics," Applied Physics Letters, vol. 85, pp. 4121-4123, 2004.
    [23] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, et al., "Lead-free piezoceramics," Nature, vol. 432, pp. 84-87, 2004.
    [24] X. H. Du, "2T/2C ferroelectric random access memory with complementary bit-line loads," ed: Google Patents, 2010.
    [25] P. K. Larsen, G. A. C. M. Spierings, R. Cuppens, and G. J. M. Dormans, "Ferroelectrics and high permittivity dielectrics for memory applications," Microelectronic Engineering, vol. 22, pp. 53-60, 1993.
    [26] S.-Y. Wu, "New Ferroelectric Memory Device, Metal-Ferroelectric-Semiconductor Transistor," IEEE Transactions on Electron Devices, vol. ED-21, pp. 499-504, 1974.
    [27] Z. Jia, T. L. Ren, T. Z. Liu, H. Hu, Z. G. Zhang, D. Xie, et al., "Study on oxidization of Ru and its application as electrode of PZT capacitor for FeRAM," Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 138, pp. 219-223, 2007.
    [28] N. Menou, H. Kuwabara, and H. Funakubo, "Impact of (111)-oriented SrRuO3/Pt tailored electrode for highly reproducible preparation of metal organic chemical vapour deposited Pb(Zr,Ti)O3 films for high density ferroelectric random access memory applications," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 46, pp. 2139-2142, 2007.
    [29] M.-M. Zhang, Z. Jia, and T.-L. Ren, "Effects of electrodes on the properties of sol-gel PZT based capacitors in FeRAM," Solid-State Electronics, vol. 53, pp. 473-477, 2009.
    [30] J. S. Cross, S.-H. Kim, S. Wada, and A. Chatterjee, "Characterization of Bi and Fe co-doped PZT capacitors for FeRAM," Science and Technology of Advanced Materials, vol. 11, 2010.
    [31] D. K. Sharma, R. Khosla, and S. K. Sharma, "Multilevel metal/Pb(Zr0.52Ti0.48)O3/TiOxNy/Si for next generation FeRAM technology node," Solid-State Electronics, vol. 111, pp. 42-46, 2015.
    [32] J. H. Chen, X. H. Dai, C. R. Li, Y. L. Cui, Q. X. Zhao, J. X. Guo, et al., "Mixed-phase Ni-Al as barrier layer against perovskite oxides to react with Cu for ferroelectric memory with Cu metallization," Journal of Alloys and Compounds, vol. 666, pp. 197-203, 2016.
    [33] Y. Lin, J. Zhu, Z. Wu, W. Luo, and Y. Li, "Enhanced Ferroelectric Properties of Pb(Hf0.3Ti0.7)O3 Thin Films by SrRuO3 Bottom Electrode," Ferroelectrics, vol. 492, pp. 143-149, 2016.
    [34] C.-P. Yeh, M. Lisker, B. Kalkofen, and E. P. Burte, "Fabrication and investigation of three-dimensional ferroelectric capacitors for the application of FeRAM," AIP Advances, vol. 6, 2016.
    [35] K. Ashikaga, K. Takaya, T. Kanehara, M. Yoshimaru, and I. Koiwa, "Reduction of process-induced damage and improvement of imprint characteristics in SrBi2Ta2O9 capacitors by postmetallization annealing," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 46, pp. 695-697, 2007.
    [36] K. Suzuki, K. Nishizawa, T. Miki, and K. Kato, "Construction and characterization of alkoxy-derived (Y,Yb)MnO3/HfO2/Si structures for FeRAM application," Journal of Sol-Gel Science and Technology, vol. 42, pp. 251-256, 2007.
    [37] S. Fan, F. Zhang, P. Wang, and Y. Ren, "Ferroelectric properties of sol-gel derived Nd-doped SrBi4Ti4O15 thin films," Journal of Rare Earths, vol. 26, pp. 575-578, 2008.
    [38] D.-W. Kim, J.-H. Kim, J.-N. Kim, H.-J. Park, H.-S. Jeon, and B.-E. Park, "Characterization of metal-ferroelectric-semiconductor structure using ferroelectric polymer polyvinylidene fluoride-trifluoroethylene (pvdf-trfe) (51/49)," Integrated Ferroelectrics, vol. 98, pp. 121-127, 2008.
    [39] J. H. Krieger, "Acousto-ferroelectric nonvolatile ram," Integrated Ferroelectrics, vol. 96, pp. 120-128, 2008.
    [40] A. Z. Simoes, E. C. Aguiar, E. Longo, and J. A. Varela, "Retention characteristics of lanthanum-doped bismuth titanate films annealed at different furnaces," Materials Chemistry and Physics, vol. 115, pp. 434-438, 2009.
    [41] D. Xie, W. Yu, Y. Luo, K. Xue, T. Ren, and L. Liu, "Etching behavior and damage rejuvenation of top electrode and Bi3.15Nd0.85Ti3O12 films applied in ferroelectric random access memory devices," Japanese Journal of Applied Physics, vol. 48, pp. 0502091-0502093, 2009.
    [42] C. M. Cheng, S. F. Chen, J. H. Tsai, K. H. Chen, and H. H. Su, "Electrical and physical properties of sodium potassium niobates thin films prepared by rf magnetron sputtering technology," in 2011 International Conference on Chemical Engineering and Advanced Materials, CEAM 2011, May 28, 2011 - May 30, 2011, Changsha, China, 2011, pp. 532-535.
    [43] Y.-K. Lee, S.-L. Ryu, S.-Y. Kweon, S.-J. Yeom, and H.-B. Kang, "Random-oriented (Bi,La)4Ti3O12 thin film deposited by pulsed-dc sputtering method on ferroelectric random access memory device," Transactions on Electrical and Electronic Materials, vol. 12, pp. 258-261, 2011.
    [44] J. Kolte, A. Daryapurkar, P. Apte, and P. Gopalan, "Structural and electrical characterization of la and Mn co-substituted bismuth ferrite thin films," Ferroelectrics, vol. 448, pp. 42-49, 2013.
    [45] Y. Ahn, J. D. Seo, and J. Y. Son, "Ferroelectric domain structures of epitaxial CaBi2Nb2O9 thin films on single crystalline Nb doped (1 0 0) SrTiO3 substrates," Journal of Crystal Growth, vol. 422, pp. 20-23, 2015.
    [46] R. Barman and D. Kaur, "Leakage current behavior of BiFeO3/BiMnO3 multilayer fabricated by pulsed laser deposition," Journal of Alloys and Compounds, vol. 644, pp. 506-512, 2015.
    [47] X. Zhang, L. Chen, Q.-Q. Sun, L.-H. Wang, P. Zhou, H.-L. Lu, et al., "Inductive crystallization effect of atomic-layer-deposited Hf0.5Zr0.5O2 films for ferroelectric application," Nanoscale Research Letters, vol. 10, 2015.
    [48] J. F. Scott, Ferroelectric Memories: Springer Berlin Heidelberg, 2013.
    [49] T. Tybell, P. Paruch, T. Giamarchi, and J. M. Triscone, "Domain Wall Creep in Epitaxial Ferroelectric Pb(Zr0.2Ti0.8)O3 Thin Films," Physical Review Letters, vol. 89, p. 097601, 2002.
    [50] 陳振嘉, "以鋯鈦酸鉛薄膜作為高密度儲存元件之研究," 碩士, 電子與資訊工程研究所碩士班, 國立雲林科技大學, 雲林縣, 2003.
    [51] A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications: Wiley, 2003.
    [52] O. M, Materials Science of Thin Films, Second ed.: Academic Press, Inc, 1992.
    [53] 李振岳, "以Pt(O)製作下電極對PZT鐵電薄膜特性之影響研究," 碩士, 材料科學工程學系, 國立清華大學, 新竹市, 2001.
    [54] C. H. Park and D. J. Chadi, "Microscopic study of oxygen-vacancy defects in ferroelectric perovskites," Physical Review B, vol. 57, pp. R13961-R13964, 1998.
    [55] B.-Y. Kim, T.-G. Seong, I.-T. Seo, J.-S. Kim, C.-Y. Kang, S.-J. Yoon, et al., "Effects of oxygen pressure on electrical properties of (Na0.5K0.5)NbO3 films grown on Pt/Ti/SiO2/Si substrates," Acta Materialia, vol. 60, pp. 7034-7040, 2012.
    [56] B. Vilquin, G. Le Rhun, R. Bouregba, G. Poullain, and H. Murray, "Effect of in situ Pt bottom electrode deposition and of Pt top electrode preparation on PZT thin films properties," Applied Surface Science, vol. 195, pp. 63-73, 2002.
    [57] I. Kars Durukan, S. CalIskan, S. Cete, B. S. Cevrimli, B. KinacI, Y. Ozen, et al., "Preparation of RF sputtered AZO/Au thin film hydrogen peroxide sensitive electrode for utilization as a biosensor," Journal of Materials Science: Materials in Electronics, vol. 25, pp. 3154-3159, 2014.
    [58] T. Ohmori, A. Nakayama, H. Mametsuka, and E. Suzuki, "Influence of sputtering parameters on electrochemical CO2 reduction in sputtered Au electrode," Journal of Electroanalytical Chemistry, vol. 514, pp. 51-55, 2001.
    [59] V. Dharuman and K. Chandrasekara Pillai, "RuO2 electrode surface effects in electrocatalytic oxidation of glucose," Journal of Solid State Electrochemistry, vol. 10, pp. 967-979, 2006.
    [60] C. Yang, S. Zhang, H. Zhang, and J. Liu, "Structure and ferroelectric properties of PZT thin film deposited on LaNiO3 bottom electrodes," Integrated Ferroelectrics, vol. 98, pp. 69-76, 2008.
    [61] S. I. Khartsev, M. A. Grishin, and A. M. Grishin, "Characterization of heteroepitaxial Na0.5K0.5NbO3/La0.5Sr0.5CoO3 electro-optical cell," Applied Physics Letters, vol. 86, pp. 1-3, 2005.
    [62] S. M. Sze, VLSI Technology: McGraw-Hill, 1988.
    [63] 李彥謙, "以射頻磁控濺鍍法成長高介電鈦酸鍶鋇薄膜之研究," 碩士, 電子與資訊工程研究所碩士班, 國立雲林科技大學, 雲林縣, 2002.
    [64] H. Xiao, Introduction to Semiconductor Manufacturing Technology: Prentice Hall, 2001.
    [65] M. Akihisa, K. Takao, T. Hideo, and T. Kazunobu, "Influence of Power-Source Frequency on the Properties of GD a-Si:H," Japanese Journal of Applied Physics, vol. 23, p. L567, 1984.
    [66] 汪建民, 材料分析: 中國材料科學學會, 1998.
    [67] R. W. Jones, Fundamental Principles of Sol-gel Technology: Institute of Metals, 1989.
    [68] D. E. Bornside, C. W. Macosko, and L. E. Scriven, "Spin coating: One‐dimensional model," Journal of Applied Physics, vol. 66, pp. 5185-5193, 1989.
    [69] Z. Huang, Q. Zhang, and R. W. Whatmore, "Structural development in the early stages of annealing of sol–gel prepared lead zirconate titanate thin films," Journal of Applied Physics, vol. 86, pp. 1662-1669, 1999.
    [70] 潘扶民. (1989, October) 表面分析技術與工業材料研究. 科儀新知. 8-22.
    [71] E. Chason and T. M. Mayer, "Thin film and surface characterization by specular X-ray reflectivity," Critical Reviews in Solid State and Materials Sciences, vol. 22, pp. 1-67, 1997.
    [72] 清華大學 羅聖全 博士 小奈米大世界.
    [73] C.-C. Lin, C.-C. Chen, C.-M. Weng, S.-Y. Chu, C.-S. Hong, and C.-C. Tsai, "Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films," Journal of Applied Physics, vol. 117, p. 085307, 2015.
    [74] Q. Yu, J.-F. Li, Y. Chen, L.-Q. Cheng, W. Sun, Z. Zhou, et al., "Effect of Pyrolysis Temperature on Sol–Gel Synthesis of Lead-free Piezoelectric (K, Na)NbO3 Films on Nb:SrTiO3 Substrates," Journal of the American Ceramic Society, vol. 97, pp. 107-113, 2014.
    [75] X. Yan, W. Ren, X. Wu, P. Shi, and X. Yao, "Lead-free (K, Na)NbO3 ferroelectric thin films: Preparation, structure and electrical properties," Journal of Alloys and Compounds, vol. 508, pp. 129-132, 2010.
    [76] P. Bergese, E. Bontempi, and L. E. Depero, "A simple solution to systematic errors in density determination by X-ray reflectivity: The XRR-density evaluation (XRR-DE) method," Applied Surface Science, vol. 253, pp. 28-32, 2006.
    [77] J.-G. Yu, H.-G. Yu, B. Cheng, X.-J. Zhao, J. C. Yu, and W.-K. Ho, "The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition," Journal of Physical Chemistry B, vol. 107, pp. 13871-13879, 2003.
    [78] L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang, and H. Fu, "Effects of Surface Oxygen Vacancies on Photophysical and Photochemical Processes of Zn-Doped TiO2 Nanoparticles and Their Relationships," The Journal of Physical Chemistry B, vol. 110, pp. 17860-17865, 2006.
    [79] J. Wang, X. Wang, Z. Cui, B. Liu, and M. Cao, "One-pot synthesis and Nb4N5 surface modification of Nb4+ self-doped KNbO3 nanorods for enhanced visible-light-driven hydrogen production," Physical Chemistry Chemical Physics, vol. 17, pp. 14185-14192, 2015.
    [80] V. V. Atuchin, I. E. Kalabin, V. G. Kesler, and N. V. Pervukhina, "Nb 3d and O 1s core levels and chemical bonding in niobates," Journal of Electron Spectroscopy and Related Phenomena, vol. 142, pp. 129-134, 2005.
    [81] V. Batra, C. V. Ramana, and S. Kotru, "Annealing-induced changes in chemical bonding and surface characteristics of chemical solution deposited Pb0.95La0.05Zr0.54Ti0.46O3 thin films," Applied Surface Science, vol. 379, pp. 191-198, 2016.
    [82] C. V. Ramana, E. J. Rubio, C. D. Barraza, A. Miranda Gallardo, S. McPeak, S. Kotru, et al., "Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films," Journal of Applied Physics, vol. 115, 2014.
    [83] V. V. Atuchin, A. V. Kalinkin, V. A. Kochubey, V. N. Kruchinin, R. S. Vemuri, and C. V. Ramana, "Spectroscopic ellipsometry and x-ray photoelectron spectroscopy of La 2O3 thin films deposited by reactive magnetron sputtering," Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, vol. 29, 2011.
    [84] L. Wang, W. Ren, P. Shi, and X. Wu, "Cobalt doping effects on structures and electrical properties of lead-free ferroelectric K0.5Na0.5NbO3 films," Journal of Alloys and Compounds, vol. 608, pp. 202-206, 2014.
    [85] L. Wang, K. Yao, P. C. Goh, and W. Ren, "Volatilization of alkali ions and effects of molecular weight of polyvinylpyrrolidone introduced in solution-derived ferroelectric K0.5Na0.5NbO3 films," Journal of Materials Research, vol. 24, pp. 3516-3522, 2009.
    [86] Y. Zhao, R. Huang, R. Liu, and H. Zhou, "Phase structure of Li0.058(Na0.51K 0.49)0.942NbO3 lead-free piezoelectric ceramics," Materials Letters, vol. 84, pp. 52-55, 2012.
    [87] H. J. Lee, I. W. Kim, J. S. Kim, C. W. Ahn, and B. H. Park, "Ferroelectric and piezoelectric properties of Na0.52K0.48NbO3 thin films prepared by radio frequency magnetron sputtering," Applied Physics Letters, vol. 94, 2009.
    [88] L.-S. Kang, B.-Y. Kim, I.-T. Seo, T.-G. Seong, J.-S. Kim, J.-W. Sun, et al., "Growth behavior and electrical properties of a (Na0.5K0.5)NbO3 thin film deposited on a Pt/Ti/SiO2/Si substrate using RF magnetron sputtering," Journal of the American Ceramic Society, vol. 94, pp. 1970-1973, 2011.
    [89] Y.-S. Lee, I.-T. Seo, B.-Y. Kim, S. Nahm, C.-Y. Kang, Y.-H. Jeong, et al., "Electrical Properties of a 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 Thin Film Grown on a Pt/Ti/SiO2/ Si Substrate," Journal of the American Ceramic Society, vol. 97, pp. 2892-2896, 2014.
    [90] B.-Y. Kim, I.-T. Seo, Y.-S. Lee, J.-S. Kim, S. Nahm, C.-Y. Kang, et al., "High-performance (Na0.5K0.5)NbO3 thin film piezoelectric energy harvester," Journal of the American Ceramic Society, vol. 98, pp. 119-124, 2015.
    [91] X. Vendrell, O. Raymond, D. A. Ochoa, J. E. Garcia, and L. Mestres, "Growth and physical properties of highly oriented La-doped (K,Na)NbO3 ferroelectric thin films," Thin Solid Films, vol. 577, pp. 35-41, 2015.
    [92] F. Lai, R. Tu, T. Goto, and J. Li, "Characterization of ferroelectric NaxK1-xNbO3 system films prepared by pulsed laser deposition," Materials Transactions, vol. 49, pp. 2076-2081, 2008.
    [93] B.-Y. Kim, T.-G. Seong, I.-T. Seo, M.-S. Jang, S. Nahm, J.-Y. Kang, et al., "Effects of annealing atmosphere on the structural and electrical properties of (Na0.5K0.5)NbO3 thin films grown by RF magnetron sputtering," Acta Materialia, vol. 60, pp. 3107-3112, 2012.
    [94] Y. Watanabe, "Electrical transport through Pb(Zr,Ti)O3 p-n and p-p heterostructures modulated by bound charges at a ferroelectric surface: Ferroelectric p-n diode," Physical Review B, vol. 59, pp. 11257-11266, 1999.
    [95] L. Yao, K. Zhu, J. Wang, J. Liu, J. Qiu, M. Cheng, et al., "Annealing temperature effects on the electrical properties of (K, Na)NbO3 thin film fabricated by a sol-gel process with a citrate precursor solution," Ferroelectrics, vol. 493, pp. 47-53, 2016.
    [96] L. Jin, F. Li, and S. Zhang, "Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures," Journal of the American Ceramic Society, vol. 97, pp. 1-27, 2014.
    [97] R. H. Yu, S. Basu, Y. Zhang, A. Parvizi-Majidi, and J. Q. Xiao, "Pinning effect of the grain boundaries on magnetic domain wall in FeCo-based magnetic alloys," Journal of Applied Physics, vol. 85, pp. 6655-6659, 1999.
    [98] I. A. Souza, A. Z. Simoes, S. Cava, L. S. Cavalcante, M. Cilense, E. Longo, et al., "Ferroelectric and dielectric properties of Ba0.5Sr0.5(Ti0.80Sn0.20)O3 thin films grown by the soft chemical method," Journal of Solid State Chemistry, vol. 179, pp. 2972-2976, 2006.

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE