簡易檢索 / 詳目顯示

研究生: 黃柏翔
Huang, Po-Hsiang
論文名稱: 藉由粒子影像測速及正交特徵分解辨認近域尾流之大尺度相干性結構
Identification of coherent structure in near-wake region by PIV and POD
指導教授: 張克勤
Chang, Keh-Chin
共同指導教授: 葉思沂
Yeh, Szu-I
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 粒子影像測速正交特徵分解大尺度相干性結構擬週期結構能量小波轉換
外文關鍵詞: PIV, POD, Coherent structure, Energy of organized motion, CWT
相關次數: 點閱:116下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 題目:藉由粒子影像測速及正交特徵分解辨認近域尾流之大尺度相干性結構
    研究生:黃柏翔
    指導教授:張克勤、葉思沂
    利用熱線測速(Hot-Wire Anemometry, HWA)之高時間解析與高樣本數驗證粒子影像測速(Particle Image Velocimetry, PIV)於高、低雷諾數(ReD = 3900、9500)條件下之可信度,藉著PIV空間性與時間序列之優勢,使用正交特徵分解(Proper Orthogonal Decomposition, POD)進行降維分析,將各個瞬時流場訊息投射於不同模態,模態越高相對能量貢獻越低,低模態且低頻率大尺度為主導流場的卡門渦街,隨著模態越高,其能量占比越低,為卡門渦街分解之小尺度渦流,並加以驗證是否為泰勒微尺度,並隨著位置由上游極靠近圓柱位置逐漸至下游,流場能量逐漸衰減。
    將個別模態對應之時間係數進行快速傅立葉(Fast Fourier Transform, FFT)及連續小波轉換(Continuous Wavelet Transform, CWT),可以得知主導流場之頻率與頻率分布,辦別其流場除了含有卡門渦街之頻率外,亦含有表示小尺度渦流之二倍與三倍諧波頻率,並繪製其大尺度相干性結構流場。
    紊流常以雷諾分解(Reynolds Decomposition)進行表示,每一瞬間為一平均值與擾動值組成,然而愈靠近鈍體之尾流,其大規模(擬)週期性(quasi-periodic)運動愈劇烈,擾動值應含有些許規律部分,利用POD能量貢獻最大且在FFT與CWT分析結果中,擁有規律行為之模態進行提取,此時雷諾分解之擾動值並不能完整表達該流場行為,而將擾動值進一步分解為週期速度與剩餘隨機擾動,使得擾動值成為更接近純粹的紊流,在遠離鈍體區域,週期運動能量衰減,則適用雷諾分解,換言之雷諾分解並不全然適用於鈍體尾流區域。
    關鍵字:粒子影像測速、正交特徵分解、大尺度相干性結構、擬週期結構能量、小波轉換

    The coherent structures in the very upstream wake subregion behind a long circular cylinder at two Reynolds numbers of 3900 and 9500 and a Strouhal number of 0.21 are identified and extracted using particle image velocimetry (PIV) along with the proper orthogonal decomposition (POD) analysis method. The quasi-periodic frequencies are identified with the resolved vorticity field, a fast Fourier transform (FFT), and a continuous wavelet transform (CWT). The results clearly show the periodic nature of the Kármán vortex street, which is primarily constituted by the 1st, 2nd and 3rd harmonic frequencies. The POD analysis identifies not only the large-scale structure (Kármán vortex) in the low-order modes, but also recognizes the small-scale eddies, which appear in the high-order modes but have low a kinetic energy contribution. The 2nd and 3rd harmonic frequencies dominate the high-order modes with small-scale eddies. Taking advantage of the improved high spatial resolution and high sampling rate of particle image velocimetry (PIV), the measured information of the spatially phase-correlated vorticity can be employed to examine the coherent structure dynamics. Among all of the available techniques for phase-resolved flow field reconstruction that have been employed to determine the spatial-temporal features of multi-scale coherent structures, proper orthogonal decomposition (POD) has been widely employed. The aim of this study is to identify and extract the vortex structure from the velocity data measured using PIV in the wake flow closer to the long circular cylinder (2-D), within the first five diameter, which has been less studied in the literature on this topic than other aspects of this topic.
    Key-words: PIV, POD, Coherent structure, Energy of organized motion, CWT

    第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1熱線測速(Hot-wire Anemometry, HWA) 2 1-2-2粒子影像測速(Particle Image Velocimetry, PIV) 3 1-2-3 正交特徵分解(Proper Orthogonal decomposition, POD) 6 1-3 研究背景與目標 7 第二章 實驗設備與模型 9 2-1 風洞架構 9 2-2 測試段模型 9 2-3 移動機構 10 2-4 校正儀器 10 2-4-1 壓力校正器 10 2-4-2 壓力轉換器 10 2-5 熱線測速系統 11 2-5-1 熱線探針 11 2-5-2 熱線測速主機 11 2-5-3 熱線模組 12 2-5-4 資料數據截取系統 12 2-5-5 Stream line應用軟體(Stream Ware) 12 2-6 粒子影像測速系統 13 2-6-1 高速攝影機 13 2-6-2 雷射及光學鏡組 13 2-6-3 追蹤粒子 13 2-6-4 拍攝鏡頭 13 第三章 實驗方法與分析 14 3-1 實驗方法 14 3-1-1 熱線測速法 14 3-1-2 粒子影像測速法 16 3-2 實驗規劃與流程 17 3-2-1 熱線測速(HWA) 17 3-2-2 粒子影像測速(PIV) 18 3-3 實驗數據分析 20 3-3-1 圓柱尾流之紊流特性 20 3-3-2 尺度分解(Decomposition by scale) 24 3-4 誤差分析 28 第四章 結果與討論 30 4-1 統計分析 31 4-2 熱線與粒子影像測速之量測結果比較 31 4-3 正交特徵分解(POD)之分析 33 4-3-1模態能量分布與能量累積 33 4-3-2探討各模態其正交特徵分解係數之頻譜關係 35 4-4 分析流場之泰勒微尺度 37 4-5利用模態確認相干性(Coherent structure) 38 第五章 結論與未來建議 41 參考文獻 43

    [1] 石昌隆「重新定義平板混合紊流中混合層之特徵長度」,國立成功大學航空太空研究所碩士論文 (2015)。
    [2] 沈家緯「以粒子影像測速儀與熱線測速儀所得數據進行圓柱近域尾流之紊態流場特性及尺度分析」,國立成功大學航空太空研究所碩士論文 (2018)。
    [3] 施柏帆「PIV應用於紊流場之定量測量與誤差分析」,國立成功大學航空太空研究所碩士論文 (2013)。
    [4] Adrian, R. J., “Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry”, Applied Optics 1, pp. 3855-3858 (1986)
    [5] Becker, H. A., Massaro, T. A., “Vortex evolution in a round jet”, J. Fluid Mech 31, pp. 435-448 (1968)
    [6] Cutler, A. D., & Bradshaw, P., “A crossed hot-wire technique for complex turbulent flows”, Experiments in Fluids, 12(1-2), pp. 17-22 (1991)
    [7] Chen, W. C., “Development of Two-phase Velocity Measurement Using PIV Technique”, PhD dissertation. Department of Aeronautics and Astronautics National Cheng Kung University (2018)
    [8] Fourier, J. B. J., “Analytical theory of heat”, ‎University of Cambridge (1822)
    [9] Goupillaud, P., Grossman, A., Morlet J., “Cycle-Octave and Related Transforms in Seismic Signal Analysis”, Geoexploration 23, pp. 85-102 (1984)
    [10] Heenan, A. F., & Morrison, J. F., “Split-film probes in recirculating flow”, Measurement Science & Technology, 9, pp. 638-649 (1998)
    [11] Hart, D. P., “PIV error correction”, Experiments in Fluids 29, pp.13-22 (2000)
    [12] Kaiser Henry, F., “The Application of Electronic Computers to Factor Analysis”, Education and Psychological Measurement 20, pp. 141-151 (1960)
    [13] Kourta, A., Boisson, H. C., Chassaing, P., Minh, H. H., “Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder.”, J Fluid Mech 181, pp.141-161 (1987)
    [14] Keane, R. D., Adrian, R. J., “Optimization of particle image velocimeters. I. Double pulsed systems”, Measurement and Science and Technology 1, pp. 1202-1215 (1990)
    [15] Kellnerova, R., Kukacka, L., Uruba, V., Jurcakova, K., Janour, Z., “Detailed analysis of POD method applied in turbulent flow”, EPJ Web of Conferences paper. No. 01038 (2012)
    [16] Lienhard, H., “Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders”, Technical Extension Service, Washington State University (1966)
    [17] Melling, A., “Tracer particles and seeding for particle image velocimetry”, Measurement science and technology 8, pp. 1406-1416 (1997)
    [18] Pearson, K., “On lines planes of closest fit to systems of points in space”, Philosophical Magazine 2, pp. 559-572 (1901)
    [19] Qingshan Zhang, Yingzheng Liu, Shaofei Wang, “The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition”, Journal of Fluids and Structures 49, pp. 53-72 (2014)
    [20] Reynolds, W. C., Hussain, A. K. M. F., “The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments”, J Fluid Mech 54, pp. 263-288 (1972)
    [21] Raffel, M., Willert, C.E., Wereley, S., Kompenhans, J., “Particle Image Velocimetry: A Practical Guide”, Springer (2007)
    [22] Sheridan, J. Wu., Weish, M. C., Hourigan, K., Thompson, M., “Longitudinal vortex structures in a cylinder wake”, Physics of Fluids 6, pp. 2883-2885 (1994)
    [23] Tennekes, H., Lumley, L., “A first Course in Turbulence”, The Massachusetts institute of Technology (1970)
    [24] Torrence, C., Compo Gilbert, P., “A Practical Guide to Wavelet Analysis”, Bulletin of the American Meteorological Society 79, pp. 61-78 (1998)
    [25] Wei, T., Smith, C. R., “Secondary vortices in the wake of circular cylinders”, J. Fluid Mech 169, pp. 513-533 (1986)
    [26] Van Oudheusden, B. W., Scarano, F., Van Hinsberg, N. P., Watt, D. W., “Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence”, Experiment in Fluids 39, pp. 86-98 (2005)
    [27] Westerweel, J., “Fundamentals of digital particle image velocimetry”, Measurement science and technology 8, pp. 1379-1392 (1997)

    下載圖示 校內:2024-08-26公開
    校外:2024-08-26公開
    QR CODE