| 研究生: |
黃柏翔 Huang, Po-Hsiang |
|---|---|
| 論文名稱: |
藉由粒子影像測速及正交特徵分解辨認近域尾流之大尺度相干性結構 Identification of coherent structure in near-wake region by PIV and POD |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 共同指導教授: |
葉思沂
Yeh, Szu-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 粒子影像測速 、正交特徵分解 、大尺度相干性結構 、擬週期結構能量 、小波轉換 |
| 外文關鍵詞: | PIV, POD, Coherent structure, Energy of organized motion, CWT |
| 相關次數: | 點閱:116 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
題目:藉由粒子影像測速及正交特徵分解辨認近域尾流之大尺度相干性結構
研究生:黃柏翔
指導教授:張克勤、葉思沂
利用熱線測速(Hot-Wire Anemometry, HWA)之高時間解析與高樣本數驗證粒子影像測速(Particle Image Velocimetry, PIV)於高、低雷諾數(ReD = 3900、9500)條件下之可信度,藉著PIV空間性與時間序列之優勢,使用正交特徵分解(Proper Orthogonal Decomposition, POD)進行降維分析,將各個瞬時流場訊息投射於不同模態,模態越高相對能量貢獻越低,低模態且低頻率大尺度為主導流場的卡門渦街,隨著模態越高,其能量占比越低,為卡門渦街分解之小尺度渦流,並加以驗證是否為泰勒微尺度,並隨著位置由上游極靠近圓柱位置逐漸至下游,流場能量逐漸衰減。
將個別模態對應之時間係數進行快速傅立葉(Fast Fourier Transform, FFT)及連續小波轉換(Continuous Wavelet Transform, CWT),可以得知主導流場之頻率與頻率分布,辦別其流場除了含有卡門渦街之頻率外,亦含有表示小尺度渦流之二倍與三倍諧波頻率,並繪製其大尺度相干性結構流場。
紊流常以雷諾分解(Reynolds Decomposition)進行表示,每一瞬間為一平均值與擾動值組成,然而愈靠近鈍體之尾流,其大規模(擬)週期性(quasi-periodic)運動愈劇烈,擾動值應含有些許規律部分,利用POD能量貢獻最大且在FFT與CWT分析結果中,擁有規律行為之模態進行提取,此時雷諾分解之擾動值並不能完整表達該流場行為,而將擾動值進一步分解為週期速度與剩餘隨機擾動,使得擾動值成為更接近純粹的紊流,在遠離鈍體區域,週期運動能量衰減,則適用雷諾分解,換言之雷諾分解並不全然適用於鈍體尾流區域。
關鍵字:粒子影像測速、正交特徵分解、大尺度相干性結構、擬週期結構能量、小波轉換
The coherent structures in the very upstream wake subregion behind a long circular cylinder at two Reynolds numbers of 3900 and 9500 and a Strouhal number of 0.21 are identified and extracted using particle image velocimetry (PIV) along with the proper orthogonal decomposition (POD) analysis method. The quasi-periodic frequencies are identified with the resolved vorticity field, a fast Fourier transform (FFT), and a continuous wavelet transform (CWT). The results clearly show the periodic nature of the Kármán vortex street, which is primarily constituted by the 1st, 2nd and 3rd harmonic frequencies. The POD analysis identifies not only the large-scale structure (Kármán vortex) in the low-order modes, but also recognizes the small-scale eddies, which appear in the high-order modes but have low a kinetic energy contribution. The 2nd and 3rd harmonic frequencies dominate the high-order modes with small-scale eddies. Taking advantage of the improved high spatial resolution and high sampling rate of particle image velocimetry (PIV), the measured information of the spatially phase-correlated vorticity can be employed to examine the coherent structure dynamics. Among all of the available techniques for phase-resolved flow field reconstruction that have been employed to determine the spatial-temporal features of multi-scale coherent structures, proper orthogonal decomposition (POD) has been widely employed. The aim of this study is to identify and extract the vortex structure from the velocity data measured using PIV in the wake flow closer to the long circular cylinder (2-D), within the first five diameter, which has been less studied in the literature on this topic than other aspects of this topic.
Key-words: PIV, POD, Coherent structure, Energy of organized motion, CWT
[1] 石昌隆「重新定義平板混合紊流中混合層之特徵長度」,國立成功大學航空太空研究所碩士論文 (2015)。
[2] 沈家緯「以粒子影像測速儀與熱線測速儀所得數據進行圓柱近域尾流之紊態流場特性及尺度分析」,國立成功大學航空太空研究所碩士論文 (2018)。
[3] 施柏帆「PIV應用於紊流場之定量測量與誤差分析」,國立成功大學航空太空研究所碩士論文 (2013)。
[4] Adrian, R. J., “Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry”, Applied Optics 1, pp. 3855-3858 (1986)
[5] Becker, H. A., Massaro, T. A., “Vortex evolution in a round jet”, J. Fluid Mech 31, pp. 435-448 (1968)
[6] Cutler, A. D., & Bradshaw, P., “A crossed hot-wire technique for complex turbulent flows”, Experiments in Fluids, 12(1-2), pp. 17-22 (1991)
[7] Chen, W. C., “Development of Two-phase Velocity Measurement Using PIV Technique”, PhD dissertation. Department of Aeronautics and Astronautics National Cheng Kung University (2018)
[8] Fourier, J. B. J., “Analytical theory of heat”, University of Cambridge (1822)
[9] Goupillaud, P., Grossman, A., Morlet J., “Cycle-Octave and Related Transforms in Seismic Signal Analysis”, Geoexploration 23, pp. 85-102 (1984)
[10] Heenan, A. F., & Morrison, J. F., “Split-film probes in recirculating flow”, Measurement Science & Technology, 9, pp. 638-649 (1998)
[11] Hart, D. P., “PIV error correction”, Experiments in Fluids 29, pp.13-22 (2000)
[12] Kaiser Henry, F., “The Application of Electronic Computers to Factor Analysis”, Education and Psychological Measurement 20, pp. 141-151 (1960)
[13] Kourta, A., Boisson, H. C., Chassaing, P., Minh, H. H., “Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder.”, J Fluid Mech 181, pp.141-161 (1987)
[14] Keane, R. D., Adrian, R. J., “Optimization of particle image velocimeters. I. Double pulsed systems”, Measurement and Science and Technology 1, pp. 1202-1215 (1990)
[15] Kellnerova, R., Kukacka, L., Uruba, V., Jurcakova, K., Janour, Z., “Detailed analysis of POD method applied in turbulent flow”, EPJ Web of Conferences paper. No. 01038 (2012)
[16] Lienhard, H., “Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders”, Technical Extension Service, Washington State University (1966)
[17] Melling, A., “Tracer particles and seeding for particle image velocimetry”, Measurement science and technology 8, pp. 1406-1416 (1997)
[18] Pearson, K., “On lines planes of closest fit to systems of points in space”, Philosophical Magazine 2, pp. 559-572 (1901)
[19] Qingshan Zhang, Yingzheng Liu, Shaofei Wang, “The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition”, Journal of Fluids and Structures 49, pp. 53-72 (2014)
[20] Reynolds, W. C., Hussain, A. K. M. F., “The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments”, J Fluid Mech 54, pp. 263-288 (1972)
[21] Raffel, M., Willert, C.E., Wereley, S., Kompenhans, J., “Particle Image Velocimetry: A Practical Guide”, Springer (2007)
[22] Sheridan, J. Wu., Weish, M. C., Hourigan, K., Thompson, M., “Longitudinal vortex structures in a cylinder wake”, Physics of Fluids 6, pp. 2883-2885 (1994)
[23] Tennekes, H., Lumley, L., “A first Course in Turbulence”, The Massachusetts institute of Technology (1970)
[24] Torrence, C., Compo Gilbert, P., “A Practical Guide to Wavelet Analysis”, Bulletin of the American Meteorological Society 79, pp. 61-78 (1998)
[25] Wei, T., Smith, C. R., “Secondary vortices in the wake of circular cylinders”, J. Fluid Mech 169, pp. 513-533 (1986)
[26] Van Oudheusden, B. W., Scarano, F., Van Hinsberg, N. P., Watt, D. W., “Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence”, Experiment in Fluids 39, pp. 86-98 (2005)
[27] Westerweel, J., “Fundamentals of digital particle image velocimetry”, Measurement science and technology 8, pp. 1379-1392 (1997)