簡易檢索 / 詳目顯示

研究生: 黃瑞祥
Huang, Ruei-Hsiang
論文名稱: 24位元輸入並內建50MHz鎖相迴路之數位音頻處理器
A 24-bit Digital Audio Processor with a 50 MHz Phase-Locked Loop
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 91
中文關鍵詞: 鎖相迴路數位音頻處理器
外文關鍵詞: control interface, volume control, equalizer, treble, bass, 5.1-Channel, phase-locked loop, digital audio processor
相關次數: 點閱:120下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文實現一個內建操作頻率為 50 MHz鎖相迴路的數位音頻信號處理器系統。 這個系統具有6個高性能的獨立聲道,主要針對 DVD、家庭劇院和數位電視等音頻信號應用,支援 5.1聲道音頻信號格式。 此格式具有5個全頻域聲道 (5)和1個窄頻聲道 (.1),為目前市面上廣泛應用的輸入格式。除此之外,本系統可支援字元長度為 16位元至24位元,輸入頻率為 16 kHz 至 192 kHz 的輸入資料。
    本系統內建 bass management、bass 和treble 控制器、4頻帶等化濾波器、主僕式音量調整器和主僕式靜音裝置…等數種處理功能。 這些功能可以藉由序列控制介面將我們欲改變的參數輸入至系統中,進而啓動或改變功能特性,達到控制系統的目的。 而且由於採用 30位元資料流和30乘18位元的乘法器架構,部分的內部運算可逹48位元的精確性,因此保有高品質的音頻信號資料。本系統實現於0.35 um互補金氧半製程,面積為 6 x 2.6 mm2,消耗功率小於0.5瓦。系統中的各項功能均已量測並驗証無誤。
    此外,本論文亦設計一個電荷幫浦架構的50 MHz輸出時脈鎖相迴路,包含相位 /頻率偵測器、電荷幫浦、迴路濾波器、電壓控制振盪器和除二電路,其中振盪器以環狀架構實現,利用充、放電相等情形使其在控制電壓改變時,輸出責任週期不因頻率變化而大幅改變,在各頻率下均接近50%。 它在本篇的應用主要是拿來作頻率倍增器,重建輸入時鐘信號並提升輸入頻率,供數位音頻信號處理系統使用,實現於 0.25 um 1P5M互補金氧半混合信號製程, 面積為0.4 x 0.4 mm2。

    In this thesis, a digital audio signal processor system with a 50 MHz phase-locked loop is designed. This system is a high performance 6-channel, which contains five full range (5) and one band-limited (.1) channels for 5.1-Channel audio. It is designed for audio applications such as DVD, home theater systems, and digital TV. Besides, it supports data input wordlength from 16 to 24-bit and sampling rates from 16 kHz to 192 kHz.
    This system contains a number of built-in processing functions including bass management, bass and treble controls; four-band equalizer filters, master and slave volume controllers; master and slave mutes. These functions can be controlled by specifying the desired operating parameters through the serial control interface. The architecture preserves high-quality audio data by using a 30-bit data path, 30 x 18-bit multiplier, and up to 48 bits of precision for some internal calculations. The chip area is 6 x 2.6 mm2 in 0.35 um CMOS process and total power consumption is less than 0.5 W. The system is successfully measured and verified for all functions.
    In addition, a 50 MHz charge-pump PLL, which contains phase and frequency detector, charge pump circuit, loop filter, voltage-controlled oscillator and divider, is designed. Ring oscillator is used to generate signal with equal duty-cycle through the electrical character of charging and discharging equally. The duty-cycle is almost 50 % without large variation through frequency changing by controlled-voltage. PLL is used as a frequency multiplier and clock generator for digital audio processor in this system. The chip area is 0.4 x 0.4 mm2 in 0.25 um CMOS 1P5M mixed-signal process.

    1 Introduction 1 1.1 Motivation............. 1 1.2 Applications............ 2 1.3 Thesis organization............ 3 Part Ⅰ Digital Audio Processor 2 Fundamental of 5.1-Channel audio and digital filters 5 2.1 5.1-Channel audio.......... 5 2.1.1 Center / Front channels.......... 6 2.1.2 Surround channels.......... 7 2.1.3 LFE channel vs. subwoofer.......... 8 2.2 Digital filters.......... 9 2.2.1 Finite impulse response (FIR) filters.......... 9 2.2.2 Infinite impulse response (IIR) filters.......... 11 2.2.3 Finite wordlength effects in digital filters.......... 12 3 Design techniques of digital audio processor 15 3.1 System architecture............ 15 3.2 Interface block............. 17 3.2.1 Digital audio input format.......... 17 3.2.2 Serial control interface.......... 19 3.3 Digital signal processing block.......... 21 3.3.1 Bass and treble............ 21 3.3.2 Equalizer (EQ) ............ 22 3.3.3 Bass management........... 23 3.3.4 Volume control........... 23 3.3.5 Mute............. 24 4 Transfer function design of digital audio processor 25 4.1 System target specifications.......... 25 4.2 Shelving filter............. 28 4.3 Peak filter ............. 36 5 Hardware design of digital audio processor 39 5.1 Design flow of digital audio processor.......... 39 5.2 Design interface block........... 40 5.2.1 Digital audio input interface.......... 40 5.2.2 Serial control interface.......... 41 5.3 Design digital signal processing block.......... 49 5.3.1 Multiplier and adder.......... 49 5.3.2 Coefficients selector.......... 49 5.3.3 EQ and BM pre-coeff.......... 49 5.3.4 Bass management........... 51 5.3.5 Bass and treble controller.......... 51 5.3.6 Equalizer (EQ) ........... 53 5.3.7 Volume control........... 55 6 Verification, layout and measurement 57 6.1 Verification............. 58 6.2 Layout.............. 65 6.3 Measurement results.............. 65 Part Ⅱ Phase-locked loop 7 Overview of phase-locked loops 68 7.1 PLL fundamentals............ 68 7.2 Stability analysis of PLL.......... 69 7.3 Phase noise performance analysis.......... 72 7.3.1 Noise at input............ 72 7.3.2 Noise of VCO............ 74 8 Design of digital phase-locked loops 76 8.1 Phase and frequency detector.......... 76 8.2 Charge pump and loop filter.......... 77 8.3 Voltage-controlled oscillator.......... 78 8.4 Divider............. 80 9 Layout and simulation results 83 9.1 Floor plan and layout considerations.......... 83 9.2 Simulation results............ 85 10 Conclusion.............. 87

    [1] “ 5.1-Channel Production Guidelines,” Dolby Laboratories Inc.

    [2] Dolby Laboratories Information.

    [3] “ TAS 3001C Digital Audio Processor,” Texas Instruments Inc.

    [4] John Watkinson, “ The Art of Digital Audio,” second edition, 1994.

    [5] “ Multichannel Digital Audio Processor,” Apogee Technology, Inc.

    [6] “ 6Ch, 24bit, 192kHz Digital Audio Processor for Full Digital Amplifier,” Pulsus Technologies Inc..

    [7] Sanjit K. Mitra and James F. Kaiser, “ Handbook for Digital Signal Processing,” first edition, John Wiley & Sons, Inc, 1993.

    [8] “ 96 kHz Digital Audio Receiver,” Cirrus Logic, Inc.

    [9] “ Stereo Audio Digital-to Analog Converter with Programmable PLL,” Burr-Brown Corporation.

    [10] “ Evaluation Board for CS4329 and CS4390,” Cirrus Logic, Inc.

    [11] Francis Rumsey and Tim McCormick, “ Sound & Recording an introduction,” second edition, 1994.

    [12] Udo Zolzer, “ Digital Audio Signal Processing,” first edition, John Wiley & Sons, Inc, 1999.

    [13] “ 2-Channel Audio Processor IC,” Princeton Technology Corp..

    [14] “ Multi-Channel Audio CODEC,” AVS Technology Inc..

    [15] John Watkinson, “ An Introduction to Digital Audio,” first edition, 1994.

    [16] R. J. CLARK et al., “ Techniques for Generating Digital Equalizer Coefficients,” J. Audio Eng. Soc., Vol. 48, No. 4, 2000 April.

    [17] Alan V. Oppenheim and Ronald W. Schafer, “ Discrete-Time Signal Processing,” second edition, Prentice-Hall, Inc, 1999.

    [18] ARTHUR P. BERKHOFF, “ Impedance Analysis of Subwoofer Systems,” J. Audio Eng. Soc., Vol. 42, No. 1/2, 1994 January/February.

    [19] David A. Johns and Ken Martin, “ Analog Integrated Circuit Design,” John Wiley & Sons, Inc, 1997

    [20] Behazad Razavi, “ Design of Analog CMOS Integrated Circuits,” international edition, McGraw-Hill, 2001.

    [21] Un-Ku Moon et al., “Spectral Analysis of Time-Domain Phase Jitter Measurements,” IEEE Transactions on Circuits and System II, Vol. 49, No. 5, May 2002.

    [22] Selim Saad Awad, “ Analysis of Accumulated Timing-Jitter in the Time Domain,” IEEE Transactions on Instrumentation and measurement, Vol. 47, No. 1, February 1998.

    [23] Amit Mehrotra, “ Noise Analysis of Phase-Locked Loops,” IEEE Transactions on Circuits and System I, Vol. 49, No. 9, September 2002.

    [24] Frank Herzel and Behzad Razavi, “ A Study of Oscillator Jitter Due to Supply and Substrate Noise,” IEEE Transactions on Circuits and System II, Vol. 46, No. 1, January 1999.

    [25] Ali Hajimiri et al., “Jitter and Phase Noise in Ring Oscillators,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 6, June 1999.

    [26] Dan H. Wolaver, “ Phase-Locked Loop Circuit Design,” Prentice-Hall Inc, 1991.

    下載圖示 校內:2005-07-29公開
    校外:2006-07-29公開
    QR CODE