| 研究生: |
黃瑞祥 Huang, Ruei-Hsiang |
|---|---|
| 論文名稱: |
24位元輸入並內建50MHz鎖相迴路之數位音頻處理器 A 24-bit Digital Audio Processor with a 50 MHz Phase-Locked Loop |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 鎖相迴路 、數位音頻處理器 |
| 外文關鍵詞: | control interface, volume control, equalizer, treble, bass, 5.1-Channel, phase-locked loop, digital audio processor |
| 相關次數: | 點閱:120 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文實現一個內建操作頻率為 50 MHz鎖相迴路的數位音頻信號處理器系統。 這個系統具有6個高性能的獨立聲道,主要針對 DVD、家庭劇院和數位電視等音頻信號應用,支援 5.1聲道音頻信號格式。 此格式具有5個全頻域聲道 (5)和1個窄頻聲道 (.1),為目前市面上廣泛應用的輸入格式。除此之外,本系統可支援字元長度為 16位元至24位元,輸入頻率為 16 kHz 至 192 kHz 的輸入資料。
本系統內建 bass management、bass 和treble 控制器、4頻帶等化濾波器、主僕式音量調整器和主僕式靜音裝置…等數種處理功能。 這些功能可以藉由序列控制介面將我們欲改變的參數輸入至系統中,進而啓動或改變功能特性,達到控制系統的目的。 而且由於採用 30位元資料流和30乘18位元的乘法器架構,部分的內部運算可逹48位元的精確性,因此保有高品質的音頻信號資料。本系統實現於0.35 um互補金氧半製程,面積為 6 x 2.6 mm2,消耗功率小於0.5瓦。系統中的各項功能均已量測並驗証無誤。
此外,本論文亦設計一個電荷幫浦架構的50 MHz輸出時脈鎖相迴路,包含相位 /頻率偵測器、電荷幫浦、迴路濾波器、電壓控制振盪器和除二電路,其中振盪器以環狀架構實現,利用充、放電相等情形使其在控制電壓改變時,輸出責任週期不因頻率變化而大幅改變,在各頻率下均接近50%。 它在本篇的應用主要是拿來作頻率倍增器,重建輸入時鐘信號並提升輸入頻率,供數位音頻信號處理系統使用,實現於 0.25 um 1P5M互補金氧半混合信號製程, 面積為0.4 x 0.4 mm2。
In this thesis, a digital audio signal processor system with a 50 MHz phase-locked loop is designed. This system is a high performance 6-channel, which contains five full range (5) and one band-limited (.1) channels for 5.1-Channel audio. It is designed for audio applications such as DVD, home theater systems, and digital TV. Besides, it supports data input wordlength from 16 to 24-bit and sampling rates from 16 kHz to 192 kHz.
This system contains a number of built-in processing functions including bass management, bass and treble controls; four-band equalizer filters, master and slave volume controllers; master and slave mutes. These functions can be controlled by specifying the desired operating parameters through the serial control interface. The architecture preserves high-quality audio data by using a 30-bit data path, 30 x 18-bit multiplier, and up to 48 bits of precision for some internal calculations. The chip area is 6 x 2.6 mm2 in 0.35 um CMOS process and total power consumption is less than 0.5 W. The system is successfully measured and verified for all functions.
In addition, a 50 MHz charge-pump PLL, which contains phase and frequency detector, charge pump circuit, loop filter, voltage-controlled oscillator and divider, is designed. Ring oscillator is used to generate signal with equal duty-cycle through the electrical character of charging and discharging equally. The duty-cycle is almost 50 % without large variation through frequency changing by controlled-voltage. PLL is used as a frequency multiplier and clock generator for digital audio processor in this system. The chip area is 0.4 x 0.4 mm2 in 0.25 um CMOS 1P5M mixed-signal process.
[1] “ 5.1-Channel Production Guidelines,” Dolby Laboratories Inc.
[2] Dolby Laboratories Information.
[3] “ TAS 3001C Digital Audio Processor,” Texas Instruments Inc.
[4] John Watkinson, “ The Art of Digital Audio,” second edition, 1994.
[5] “ Multichannel Digital Audio Processor,” Apogee Technology, Inc.
[6] “ 6Ch, 24bit, 192kHz Digital Audio Processor for Full Digital Amplifier,” Pulsus Technologies Inc..
[7] Sanjit K. Mitra and James F. Kaiser, “ Handbook for Digital Signal Processing,” first edition, John Wiley & Sons, Inc, 1993.
[8] “ 96 kHz Digital Audio Receiver,” Cirrus Logic, Inc.
[9] “ Stereo Audio Digital-to Analog Converter with Programmable PLL,” Burr-Brown Corporation.
[10] “ Evaluation Board for CS4329 and CS4390,” Cirrus Logic, Inc.
[11] Francis Rumsey and Tim McCormick, “ Sound & Recording an introduction,” second edition, 1994.
[12] Udo Zolzer, “ Digital Audio Signal Processing,” first edition, John Wiley & Sons, Inc, 1999.
[13] “ 2-Channel Audio Processor IC,” Princeton Technology Corp..
[14] “ Multi-Channel Audio CODEC,” AVS Technology Inc..
[15] John Watkinson, “ An Introduction to Digital Audio,” first edition, 1994.
[16] R. J. CLARK et al., “ Techniques for Generating Digital Equalizer Coefficients,” J. Audio Eng. Soc., Vol. 48, No. 4, 2000 April.
[17] Alan V. Oppenheim and Ronald W. Schafer, “ Discrete-Time Signal Processing,” second edition, Prentice-Hall, Inc, 1999.
[18] ARTHUR P. BERKHOFF, “ Impedance Analysis of Subwoofer Systems,” J. Audio Eng. Soc., Vol. 42, No. 1/2, 1994 January/February.
[19] David A. Johns and Ken Martin, “ Analog Integrated Circuit Design,” John Wiley & Sons, Inc, 1997
[20] Behazad Razavi, “ Design of Analog CMOS Integrated Circuits,” international edition, McGraw-Hill, 2001.
[21] Un-Ku Moon et al., “Spectral Analysis of Time-Domain Phase Jitter Measurements,” IEEE Transactions on Circuits and System II, Vol. 49, No. 5, May 2002.
[22] Selim Saad Awad, “ Analysis of Accumulated Timing-Jitter in the Time Domain,” IEEE Transactions on Instrumentation and measurement, Vol. 47, No. 1, February 1998.
[23] Amit Mehrotra, “ Noise Analysis of Phase-Locked Loops,” IEEE Transactions on Circuits and System I, Vol. 49, No. 9, September 2002.
[24] Frank Herzel and Behzad Razavi, “ A Study of Oscillator Jitter Due to Supply and Substrate Noise,” IEEE Transactions on Circuits and System II, Vol. 46, No. 1, January 1999.
[25] Ali Hajimiri et al., “Jitter and Phase Noise in Ring Oscillators,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 6, June 1999.
[26] Dan H. Wolaver, “ Phase-Locked Loop Circuit Design,” Prentice-Hall Inc, 1991.