| 研究生: |
施采妙 Shih, Tsai-Miao |
|---|---|
| 論文名稱: |
設計口腔預防保健的智慧型抗齲粒子 Design of an Intelligent Anti-caries Particles for Oral Preventive Care |
| 指導教授: |
謝達斌
Shieh, Dar-Bin 王東堯 Wong, Tung-Yiu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 氟基磷灰石 、抗齲粒子 、氟離子 、抗菌 |
| 外文關鍵詞: | fluorapatite, anti-caries particle, fluoride, antibacteria |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
齲齒是一種最常見的口腔疾病,其形成原因來自於一些致齲菌產生酸而侵蝕牙齒。變異鏈球菌(Streptococcus mutans)是最主要造成齲齒的病原菌,經由代謝醣類產生酸後造成牙齒組織去礦化。然而,並不是所有口腔中的細菌都會造成齲齒,許多口腔中的細菌可以與致齲菌的菌落相抗衡,進而保護牙齒免於形成齲齒。因此,開發有效的抗齲物質是一個重要的課題,其必須能夠抑制致齲菌的生長,並且保護不會造成齲齒的益菌,進而維護口腔中菌落的平衡。氫氧基磷灰石是骨骼和牙齒的主要成分,常被運用在各種層面,包含生醫材料、組織工程和藥物釋放等等。在過去的研究中,要形成球狀的氫氧基磷灰石,一些有機的分子或聚合物扮演很重要的角色,其會經由在溶液中形成特殊結構的微胞而形成。然而,現在只需透過離子就可以幫助礦化,不需要任何的界面活性劑,就能在溶液中製備含有氟離子的氟基磷灰石。這些合成出來的氟基磷灰石的性質經由高解析熱電子型場發射掃描式電子顯微鏡、X光繞射儀和傅里葉轉換紅外光譜來分析,也藉由氟離子電極偵測氟離子的釋放,發現氟基磷灰石在酸性溶液中的氟離子釋放程度比中性溶液要高。另外,藉由菌落形成單位的檢測可以進一步去分析氟基磷灰石對於變異鏈球菌和格氏鏈球菌(Streptococcus gordonii)的抗菌能力,結果顯示這些氟基磷灰石不只能有效地抑制致齲菌的生長並且能同時保護口腔中的益菌,而這種結果在牙齒琺瑯質的切片上也可以由高解析熱電子型場發射掃描式電子顯微鏡觀察到。這提供了一個新的想法去開發這種智慧型抗齲的奈米粒子,若能將這些粒子加入牙膏,將會是未來口腔預防照護的新途徑。
Caries is one of the most popular oral diseases derived from acid challenge produced by cariogenic bacteria. Streptococcus mutans is the major pathogenic bacteria involved in caries, which can form dental plaque followed by demineralization of tooth mineral tissues. Not all bacteria in oral cavity contribute the development of caries. Instead, many oral bacteria have protective effect to caries development through counter-balance of the cariogenic flora. Therefore, it is important in the design of effective anti-carious strategy that integrates selectivity for cariogenic pathogens inhibition and non-cariogenic bacteria preservation. Hydroxyapatite, as the main mineral component of bones and teeth, has applications as biomaterials, tissue engineering, and drug delivery, etc. In previous study, organic molecules and polymers play an important role in the formation of these spherical hydroxyapatite particles through forming a specific structure of micelles in solution. However, a solution method to prepare fluoride-doped hydroxyapatite (Fluorapatite) with hierarchical structure via an ion-assisted and surfactant-free mineralization process has been employed. High-resolution thermal field emission scanning electron microscope (FE-SEM), X-ray diffraction and Fourier transform infrared spectroscope were used to characterize the derived particles. The fluoride release of fluorapatite particles was evaluated by fluoride ion electrode. The fluoride release concentration was higher in acidic environment than in neutral. Further, the antibacterial activity of the particles was evaluated in S. mutans and S. gordonii by colony forming unit assay. The results showed fluorapatite could not only selectively suppress cariogenic bacteria but protect the probiotics of the oral cavity. We also confirmed the differential antibacterial activity in an ex vivo model using human tooth enamel slab by FE-SEM. These nanoparticles provide a new concept to develop smart anti-caries strategy as the nanoparticles not only protect teeth against the threat of cariogenic bacteria but also protect the probiotics.
Agathopoulos, S., Tulyaganov, D.U., Marques, P.A., Ferro, M.C., Fernandes, M.H., and Correia, R.N. (2003). The fluorapatite-anorthite system in biomedicine. Biomaterials 24, 1317-1331.
Aina, V., Bergandi, L., Lusvardi, G., Malavasi, G., Imrie, F.E., Gibson, I.R., Cerrato, G., and Ghigo, D. (2013). Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells. Materials science & engineering C, Materials for biological applications 33, 1132-1142.
Allaker, R.P., and Ren, G. (2008). Potential impact of nanotechnology on the control of infectious diseases. Trans R Soc Trop Med Hyg 102, 1-2.
Andrews, J.M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy 48, 5-16.
Angker, L., Swain, M.V., Wong, L., and Sissons, C. (2011). The effects of fluoride and mineralising treatments on plaque microcosm Ca, P and F, pH responses and cariogenicity. The New Zealand dental journal 107, 12-18.
Baker-Austin, C., Wright, M.S., Stepanauskas, R., and McArthur, J.V. (2006). Co-selection of antibiotic and metal resistance. Trends in microbiology 14, 176-182.
Blake, G., Fagan, D., and Foley, C. (2012). Overview of the Dental Products Markerts.
Bradshaw, D.J., Marsh, P.D., Hodgson, R.J., and Visser, J.M. (2002). Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Caries research 36, 81-86.
Bretz, W.A., and Rosa, O.P. (2011). Emerging technologies for the prevention of dental caries. Are current methods of prevention sufficient for the high risk patient? International dental journal 61 Suppl 1, 29-33.
Busch, S., Schwarz, U., and Kniep, R. (2001). Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite-gelatine composites (Washington, DC, ETATS-UNIS: American Chemical Society).
Cegelski, L., Marshall, G.R., Eldridge, G.R., and Hultgren, S.J. (2008). The biology and future prospects of antivirulence therapies. Nature reviews Microbiology 6, 17-27.
Chen, H., Clarkson, B.H., Sun, K., and Mansfield, J.F. (2005). Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J Colloid Interface Sci 288, 97-103.
Chen, H., Tang, Z., Liu, J., Sun, K., Chang, S.R., Peters, M.C., Mansfield, J.F., Czajka-Jakubowska, A., and Clarkson, B.H. (2006). Acellular synthesis of a human enamel-like microstructure. Advanced Materials 18, 1846-1851.
Clarkson, J.J. (2000). International collaborative research on fluoride. Journal of dental research 79, 893-904.
Cury, J.A., and Tenuta, L.M.A. (2008). How to Maintain a Cariostatic Fluoride Concentration in the Oral Environment. Advances in Dental Research 20, 13-16.
de Soet, J.J., Nyvad, B., and Kilian, M. (2000). Strain-related acid production by oral streptococci. Caries research 34, 486-490.
Dibrov, P., Dzioba, J., Gosink, K.K., and Häse, C.C. (2002). Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrobial Agents and Chemotherapy 46, 2668-2670.
Domon-Tawaraya, H., Nakajo, K., Washio, J., Ashizawa, T., Ichino, T., Sugawara, H., Fukumoto, S., and Takahashi, N. (2013). Divalent cations enhance fluoride binding to Streptococcus mutans and Streptococcus sanguinis cells and subsequently inhibit bacterial acid production. Caries research 47, 141-149.
Dorozhkin, S. (2009). Calcium Orthophosphates in Nature, Biology and Medicine. Materials 2, 399-498.
Dorozhkin, S.V. (2007). A hierarchical structure for apatite crystals. Journal of materials science Materials in medicine 18, 363-366.
Esteban-Tejeda, L., Malpartida, F., Esteban-Cubillo, A., Pecharroman, C., and Moya, J.S. (2009). Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20, 505701.
Fan, Y., Sun, Z., and Moradian-Oldak, J. (2009). Effect of fluoride on the morphology of calcium phosphate crystals grown on acid-etched human enamel. Caries research 43, 132-136.
Fathi, M., Ahmadian, M., and Bahrami, M. (2012). Novel bioactive Co-based alloy/FA nanocomposite for dental applications. Dental research journal 9, 173-179.
Featherstone, J.D. (2006). Caries prevention and reversal based on the caries balance. Pediatric dentistry 28, 128-132; discussion 192-128.
Ferraz, M.P., Mateus, A.Y., Sousa, J.C., and Monteiro, F.J. (2007). Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. Journal of biomedical materials research Part A 81, 994-1004.
Fogarassy, P., Gerday, D., and Lodini, A. (2005). Agglomerated nanostructured particles disintegration during the plasma thermal spraying process. Mechanics Research Communications 32, 221-239.
Fowler, C.E., Li, M., Mann, S., and Margolis, H.C. (2005). Influence of surfactant assembly on the formation of calcium phosphate materials-A model for dental enamel formation. Journal of Materials Chemistry 15, 3317-3325.
Garcez, R.M., Buzalaf, M.A., and de Araujo, P.A. (2007). Fluoride release of six restorative materials in water and pH-cycling solutions. Journal of applied oral science : revista FOB 15, 406-411.
Gelover, S., Gómez, L.A., Reyes, K., and Teresa Leal, M. (2006). A practical demonstration of water disinfection using TiO2 films and sunlight. Water Research 40, 3274-3280.
Guo, Y.J., Wang, Y.Y., Chen, T., Wei, Y.T., Chu, L.F., and Guo, Y.P. (2013). Hollow carbonated hydroxyapatite microspheres with mesoporous structure: hydrothermal fabrication and drug delivery property. Materials science & engineering C, Materials for biological applications 33, 3166-3172.
Hajipour, M.J., Fromm, K.M., Ashkarran, A.A., Jimenez de Aberasturi, D., de Larramendi, I.R., Rojo, T., Serpooshan, V., Parak, W.J., and Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in biotechnology 30, 499-511.
Huh, A.J., and Kwon, Y.J. (2011). "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release : official journal of the Controlled Release Society 156, 128-145.
Jelinek, M., Kocourek, T., Remsa, J., Weiserova, M., Jurek, K., Miksovsky, J., Strnad, J., Galandakova, A., and Ulrichova, J. (2013). Antibacterial, cytotoxicity and physical properties of laser - Silver doped hydroxyapatite layers. Materials science & engineering C, Materials for biological applications 33, 1242-1246.
Jevtić, M., Mitrić, M., Škapin, S., Jančar, B., Ignjatović, N., and Uskoković, D. (2008). Crystal Structure of Hydroxyapatite Nanorods Synthesized by Sonochemical Homogeneous Precipitation. Crystal Growth & Design 8, 2217-2222.
Jiang, P., Zhou, J.J., Fang, H.F., Wang, C.Y., Wang, Z.L., and Xie, S.S. (2007). Hierarchical shelled ZnO structures made of bunched nanowire arrays. Advanced Functional Materials 17, 1303-1310.
Karthikeyan, R., Amaechi, B.T., Rawls, H.R., and Lee, V.A. (2011). Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Archives of oral biology 56, 437-445.
Kidd, E.A., and Fejerskov, O. (2004). What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. Journal of dental research 83 Spec No C, C35-38.
Li, L., Pan, H., Tao, J., Xu, X., Mao, C., Gu, X., and Tang, R. (2008a). Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. Journal of Materials Chemistry 18, 4079.
Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., and Alvarez, P.J.J. (2008b). Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research 42, 4591-4602.
Liao, Y.M., Feng, Z.D., and Li, S.W. (2008). Preparation and characterization of hydroxyapatite coatings on human enamel by electrodeposition. Thin Solid Films 516, 6145-6150.
Lussi, A., Hellwig, E., and Klimek, J. (2012). Fluorides - mode of action and recommendations for use. Schweizer Monatsschrift fur Zahnmedizin = Revue mensuelle suisse d'odonto-stomatologie = Rivista mensile svizzera di odontologia e stomatologia / SSO 122, 1030-1042.
Mansour, H.M., Rhee, Y.S., and Wu, X. (2009). Nanomedicine in pulmonary delivery. International journal of nanomedicine 4, 299-319.
Marquis, R.E., Clock, S.A., and Mota-Meira, M. (2003). Fluoride and organic weak acids as modulators of microbial physiology. FEMS microbiology reviews 26, 493-510.
Marsh, P.D. (2006). Dental diseases--are these examples of ecological catastrophes? International journal of dental hygiene 4 Suppl 1, 3-10; discussion 50-12.
Mei, M.L., Li, Q.L., Chu, C.H., Lo, E.C., and Samaranayake, L.P. (2013). Antibacterial effects of silver diamine fluoride on multi-species cariogenic biofilm on caries. Annals of clinical microbiology and antimicrobials 12, 4.
Montazeri, N., Jahandideh, R., and Biazar, E. (2011). Synthesis of fluorapatite-hydroxyapatite nanoparticles and toxicity investigations. International journal of nanomedicine 6, 197-201.
Moser, J., Lange, C., Krausze, J., Rebelein, J., Schubert, W.D., Ribbe, M.W., Heinz, D.W., and Jahn, D. (2013). Structure of ADP-aluminium fluoride-stabilized protochlorophyllide oxidoreductase complex. Proceedings of the National Academy of Sciences of the United States of America 110, 2094-2098.
Okazaki, M., Hirata, I., Matsumoto, T., and Takahashi, J. (2005). Advantages of TOF-SIMS analysis of hydroxyapatite and fluorapatite in comparison with XRD, HR-TEM and FT-IR. Dental materials journal 24, 508-514.
Onuma, K., Yamagishi, K., and Oyane, A. (2005). Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions. Journal of Crystal Growth 282, 199-207.
Palmer, L.C., Newcomb, C.J., Kaltz, S.R., Spoerke, E.D., and Stupp, S.I. (2008). Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical reviews 108, 4754-4783.
Pandit, S., Kim, G.R., Lee, M.H., and Jeon, J.G. (2011a). Evaluation of Streptococcus mutans biofilms formed on fluoride releasing and non fluoride releasing resin composites. Journal of dentistry 39, 780-787.
Pandit, S., Kim, H.J., Song, K.Y., and Jeon, J.G. (2013). Relationship between Fluoride Concentration and Activity against Virulence Factors and Viability of a Cariogenic Biofilm: in vitro Study. Caries research 47, 539-547.
Pandit, S., Kim, J.E., Jung, K.H., Chang, K.W., and Jeon, J.G. (2011b). Effect of sodium fluoride on the virulence factors and composition of Streptococcus mutans biofilms. Archives of oral biology 56, 643-649.
Pissuwan, D., Cortie, C.H., Valenzuela, S.M., and Cortie, M.B. (2010). Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends in biotechnology 28, 207-213.
Qi, C., Zhu, Y.J., Lu, B.Q., Zhao, X.Y., Zhao, J., Chen, F., and Wu, J. (2013). Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chemistry 19, 5332-5341.
Rölla, G. (1989). Why is sucrose so cariogenic? The role of glucosyltransferase and polysaccharides. Scandinavian journal of dental research 97, 115-119.
Rai, M., Yadav, A., and Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27, 76-83.
Rocha Gomes Torres, C., Borges, A.B., Torres, L.M., Gomes, I.S., and de Oliveira, R.S. (2011). Effect of caries infiltration technique and fluoride therapy on the colour masking of white spot lesions. Journal of dentistry 39, 202-207.
Rodriguez-Lorenzo, L.M., Hart, J.N., and Gross, K.A. (2003). Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomaterials 24, 3777-3785.
Rosin-Grget, K., and Lincir, I. (2001). Current concept on the anticaries fluoride mechanism of the action. Collegium antropologicum 25, 703-712.
Sadiq, I.M., Chowdhury, B., Chandrasekaran, N., and Mukherjee, A. (2009). Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 5, 282-286.
Santos-Magalhães, N.S., and Mosqueira, V.C.F. (2010). Nanotechnology applied to the treatment of malaria. Advanced Drug Delivery Reviews 62, 560-575.
Schilling, K.M., and Bowen, W.H. (1992). Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infection and immunity 60, 284-295.
Shanmugam KT, M.K., Balachander N, Sudha Jimson, Sarangarajan R (2013). Dental Caries Vaccine – A Possible Option? Journal of Clinical and Diagnostic Research [serial online] 7, 1250-1253.
Shemesh, M., Tam, A., and Steinberg, D. (2007). Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose. Journal of medical microbiology 56, 1528-1535.
Sheykhan, M., Heydari, A., Ma'mani, L., and Badiei, A. (2011). The synthesis and spectroscopic characterization of nano calcium fluorapatite using tetra-butylammonium fluoride. Spectrochimica acta Part A, Molecular and biomolecular spectroscopy 83, 379-383.
Shivakumar, K.M., Vidya, S.K., and Chandu, G.N. (2009). Dental caries vaccine. Indian journal of dental research : official publication of Indian Society for Dental Research 20, 99-106.
Sinha, A., Mishra, T., and Ravishankar, N. (2008). Polymer assisted hydroxyapatite microspheres suitable for biomedical application. Journal of materials science Materials in medicine 19, 2009-2013.
Smith, D.J., King, W.F., Rivero, J., and Taubman, M.A. (2005). Immunological and protective effects of diepitopic subunit dental caries vaccines. Infection and immunity 73, 2797-2804.
Sosnik, A., Carcaboso, Á.M., Glisoni, R.J., Moretton, M.A., and Chiappetta, D.A. (2010). New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Advanced Drug Delivery Reviews 62, 547-559.
Stanley, N.R., and Lazazzera, B.A. (2004). Environmental signals and regulatory pathways that influence biofilm formation. Molecular microbiology 52, 917-924.
Taji, S., and Seow, W.K. (2010). A literature review of dental erosion in children. Aust Dent J 55, 358-367; quiz 475.
Tschoppe, P., Zandim, D.L., Martus, P., and Kielbassa, A.M. (2011). Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. Journal of dentistry 39, 430-437.
van Houte, J. (1994). Role of micro-organisms in caries etiology. Journal of dental research 73, 672-681.
Vogel, G.L., Chow, L.C., and Carey, C.M. (2008). Calcium pre-rinse greatly increases overnight salivary fluoride after a 228 ppm fluoride rinse. Caries research 42, 401-404.
von Nussbaum, F., Brands, M., Hinzen, B., Weigand, S., and Habich, D. (2006). Antibacterial natural products in medicinal chemistry--exodus or revival? Angewandte Chemie (International ed in English) 45, 5072-5129.
Walsh, T., Worthington, H.V., Glenny, A.M., Appelbe, P., Marinho, V.C., and Shi, X. (2010). Fluoride toothpastes of different concentrations for preventing dental caries in children and adolescents. The Cochrane database of systematic reviews, CD007868.
Wang, B.Y., Alvarez, P., Hong, J., and Kuramitsu, H.K. (2011). Periodontal pathogens interfere with quorum-sensing-dependent virulence properties in Streptococcus mutans. Journal of periodontal research 46, 105-110.
Wang, X., Zhuang, J., Peng, Q., and Li, Y.D. (2006). Liquid–Solid–Solution Synthesis of Biomedical Hydroxyapatite Nanorods. Advanced Materials 18, 2031-2034.
Wang, Y., Samoei, G.K., Lallier, T.E., and Xu, X. (2012). Synthesis and Characterization of New Antibacterial Fluoride-Releasing Monomer and Dental Composite. ACS macro letters 2, 59-62.
Wei, J., Wang, J., Shan, W., Liu, X., Ma, J., Liu, C., Fang, J., and Wei, S. (2011). Development of fluorapatite cement for dental enamel defects repair. Journal of materials science Materials in medicine 22, 1607-1614.
Weir, E., Lawlor, A., Whelan, A., and Regan, F. (2008). The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133, 835-845.
Witte, W. (2004). International dissemination of antibiotic resistant strains of bacterial pathogens. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 4, 187-191.
Xia, W., Grandfield, K., Schwenke, A., and Engqvist, H. (2011). Synthesis and release of trace elements from hollow and porous hydroxyapatite spheres. Nanotechnology 22, 305610.
Yin, Y., Yun, S., Fang, J., and Chen, H. (2009). Chemical regeneration of human tooth enamel under near-physiological conditions. Chemical communications (Cambridge, England), 5892-5894.
Zhang, C., Yang, J., Quan, Z., Yang, P., Li, C., Hou, Z., and Lin, J. (2009a). Hydroxyapatite Nano- and Microcrystals with Multiform Morphologies: Controllable Synthesis and Luminescence Properties. Crystal Growth & Design 9, 2725-2733.
Zhang, H.-b., Zhou, K.-c., Li, Z.-y., and Huang, S.-p. (2009b). Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method. Journal of Physics and Chemistry of Solids 70, 243-248.
Zhang, J.Z., Harper, D.S., Vogel, G.L., and Schumacher, G. (2004). Effect of an essential oil mouthrinse, with and without fluoride, on plaque metabolic acid production and pH after a sucrose challenge. Caries research 38, 537-541.
校內:2018-08-29公開