| 研究生: |
黃文宣 Huang, Wen-Xuan |
|---|---|
| 論文名稱: |
有機鈣鈦礦共面波導饋入單極天線模擬與實作 Simulation and implementation of organic perovskite coplanar waveguide monopole antenna |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 太陽能天線 、有機鈣鈦礦 、太陽能電池 、共平面波導 |
| 外文關鍵詞: | solar antenna, organic perovskite solar cell, coplanar waveguide |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功製作出共平面波導與鈣鈦礦太陽能電池的整合元件,此元件是一種將天線傳輸以及太陽能電池儲存電力的技術整合在一起的雙功能元件,也就是當它在發射或接收電磁波訊號的同時,也能提供太陽能轉換的電力給外部的電路,稱為太陽能天線。太陽能天線的結構中,我們提出新的構想,使用鈣鈦礦太陽能電池做為共平面波導的輻射面,並且為了讓鈣鈦礦太陽能電池可以正常使用,我們使用透明的玻璃基板做為天線的介質基板以及透明導電材料FTO作為天線的導體,如此一來鈣鈦礦太陽能電池所需的光線便不會受到天線所遮蔽。
本論文主要分為兩大部分,第一個部分為使用電磁模擬軟體設計天線,為了減少結構的複雜度造成模擬時的困難,我們將鈣鈦礦太陽能電池的結構進行簡化,然後再將簡化後的鈣鈦礦太陽能電池套用至模擬的天線結構,並且透過調變太陽能電池的上下電極、半導體吸收層等部位的導電度、介電常數以及厚度等的材料參數,來觀察以上變化對天線增益造成的影響,最後透過以上模擬中得到的結果,設計出能將天線增益最佳化並且適合應用在太陽能天線上的鈣鈦礦太陽能電池結構,最後實作出我們的太陽能天線,並且實際量測太陽能天線的return loss以及radiation pattern,接著與我們的模擬結果做比較。
第二個部分的研究中,由於透明導電材料的導電率比起一般常見的金屬導電率低了約2個order,導致天線的增益跟效率並沒有很高。從skin depth的公式在導體是FTO與操作頻率是2.4 GHz的條件下計算出來大約是10 μm,但我們的FTO厚度只有200 μm,而從skin depth的公式可以知道在不改變FTO厚度的情況下,能改變的剩下導體的導電率,因此我們透過在FTO上鍍上奈米厚的金屬,使得兩個導電材料並聯,等效薄膜電阻降低,導電率因而上升,進而改善天線增益跟效率。最後選擇的金屬材料為鉑,因為鉑導電率高,又很穩定,在任何溫度下幾乎不會氧化。
經過模擬與實際量測後的結果發現結合鈣鈦礦太陽能電池後對透明天線的return loss與radiation pattern並沒有太大的影響,而鈣鈦礦太陽能電池在照光後產生的光電效應經過實際量測發現對太陽能天線只有些微的影響,並不會使天線無法操作,因此證明我們設計的天線結構具有相當大的可行性。而在改善透明天線的增益以及效率的研究中,我們首先模擬透明天線的表面電流,發現電流強度較強的地方主要在於中間微帶線以及接地面的邊緣,因此模擬了在微帶線以及地面的邊緣鍍上鉑後的表面電流分布,其中地面的邊緣鍍的方式分了兩種,1種是倒L型一種是1字型,且兩種類型的寬度分別都有1 mm、1.5 mm與2 mm。最後結果發現1字型的表面電流強度增強的效果僅略輸倒L型,幾乎沒有差別,最後選擇1字型來做我實際鍍鉑的遮罩。實際量測後發現在鍍上寬度1 mm的鉑後,增益從原本的-6.12 dBi提升到-0.46 dBi,且效率也從10.17 %提升到48.04 %,寬度在1.5 mm與2 mm的增益以及效率也非常相近。
This research contains two parts. High-frequency electromagnetic simulation software was used to simulate solar antenna and then measure the solar antenna in first part. Since the perovskite solar cell structure is very complex to simulate, it must be simplified, then applied to the simulated solar antenna structure and observe the influences on the solar antenna by adjusting the material parameters of the solar cell. In the second part of the research, the Pt nano-layer will be used as to improve the gain and efficiency of the transparent antenna. From the formula of skin depth, it can be known that the conductivity of the conductor can be changed to reduce the skin depth without changing the thickness of FTO. Therefore, by coating metal nano-layer on the FTO, the two conductive materials are connected in parallel, and the equivalent sheet resistance decreases and the conductivity increases, which improves the antenna gain and efficiency.
In simulation and measurement, it can be found that the reflection coefficient and radiation pattern does not have much effect when the transparent antenna is combined with the perovskite solar cell. The photoelectric effect produced by perovskite solar cell after illumination has only a slight effect on the solar antenna and does not make the antenna inoperable. In the study of improving gain and efficiency, we first simulate the surface current of the transparent antenna. It is found that the current intensity is mainly in the middle feed line and the edge of the ground plane. After coating with a width of 1mm Pt, the gain is increased from -6.12 dBi to -0.46 dBi, and the efficiency is also increased from 10.17 % to 48.04%.
[1] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, "Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells," Journal of the American Chemical Society, vol. 134, pp. 17396-17399, 2012.
[2] D. Liu and T. L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques," Nature photonics, vol. 8, pp. 133-138, 2014.
[3] O. Alobaidi, P. Chelvanathan, B. Bais, K. Sopian, M. Alghoul, M. Akhtaruzzaman, and N. Amin, "Vacuum annealed Ga: ZnO (GZO) thin films for solar cell integrated transparent antenna application," Materials Letters, vol. 304, pp. 130551, 2021.
[4] O. R. Alobaidi, P. Chelvanathan, S. K. Tiong, B. Bais, M. A. Uzzaman, and N. Amin, "Transparent Antenna for Green Communication Feature: A Systematic Review on Taxonomy Analysis, Open Challenges, Motivations, Future Directions and Recommendations," IEEE Access, vol. 10, pp. 12286-12321, 2020.
[5] D. Potti, G. N. A. Mohammed, K. Savarimuthu, and B. B. Pamula, "Multilayer thin film based optically transparent dual‐band automotive windshield antenna," International Journal of RF and Microwave Computer‐Aided Engineering, vol. 32, pp. e23038, 2022.
[6] J. Park, S. Y. Lee, J. Kim, D. Park, W. Choi, and W. Hong, "An optically invisible antenna-on-display concept for millimeter-wave 5G cellular devices," IEEE Transactions on Antennas and Propagation, vol. 67, pp. 2942-2952, 2019.
[7] W. P. Menzel, "A New Travelling Wave Antenna in Microstrip," 1978 8th European Microwave Conference, vol. pp. 302-306, 1978.
[8] H. H. M. Ghouz, M. F. A. Sree, and M. A. Ibrahim, "Novel wideband microstrip monopole antenna designs for WiFi/LTE/WiMax devices," IEEE Access, vol. 8, pp. 9532-9539, 2020.
[9] H. M. Chen, Y. K. Wang, Y. F. Lin, C. Y. Lin, and S. C. Pan, "Microstrip-fed circularly polarized square-ring patch antenna for GPS applications," IEEE Transactions on Antennas and Propagation, vol. 57, pp. 1264-1267, 2009.
[10] M. A. Maindarkar and V. G. Kasabegoudar, "Slot Coupled Ultra Wideband and Multiband Monopole Antennas for Wireless Applications," International Journal of Computer Applications, vol. 60, pp. 2012.
[11] F. Caspers, "RF engineering basic concepts: the Smith chart," arXiv preprint arXiv:1201.4068, vol. pp. 2012.
[12] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the american chemical society, vol. 131, pp. 6050-6051, 2009.
[13] Y. Zhou, J. Hu, Y. Wu, R. Qing, C. Zhang, X. Xu, and M. Jiang, "Review on methods for improving the thermal and ambient stability of perovskite solar cells," Journal of Photonics for Energy, vol. 9, pp. 040901, 2019.
[14] F. Ji, L. Wang, S. Pang, P. Gao, H. Xu, G. Xie, J. Zhang, and G. Cui, "A balanced cation exchange reaction toward highly uniform and pure phase FA1−xMAxPbI3 perovskite films," Journal of Materials Chemistry A, vol. 4, pp. 14437-14443, 2016.
[15] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, and A. Hagfeldt, "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy & environmental science, vol. 9, pp. 1989-1997, 2016.
[16] B. Cao, L. Yang, S. Jiang, H. Lin, N. Wang, and X. Li, "Flexible quintuple cation perovskite solar cells with high efficiency," Journal of Materials Chemistry A, vol. 7, pp. 4960-4970, 2019.
[17] M. Anaya, G. Lozano, M. E. Calvo, and H. Míguez, "ABX3 perovskites for tandem solar cells," Joule, vol. 1, pp. 769-793, 2017.
[18] G. Han, H. D. Hadi, A. Bruno, S. A. Kulkarni, T. M. Koh, L. H. Wong, C. Soci, N. Mathews, S. Zhang, and S. G. Mhaisalkar, "Additive selection strategy for high performance perovskite photovoltaics," The Journal of Physical Chemistry C, vol. 122, pp. 13884-13893, 2018.
[19] S. S. Mohammed, "Modeling and Simulation of Photovoltaic module using MATLAB/Simulink," International Journal of Chemical and Environmental Engineering, vol. 2, pp. 2011.
[20] Z. Zhang, B. Bai, X. Li, Y. Liu, C. Sun, and Y. Zhang, "Integration of circularly polarized microstrip slot array antenna with amorphous silicon solar cells," IEEE Antennas and Wireless Propagation Letters, vol. 19, pp. 2320-2323, 2020.
[21] O. O'Conchubhair, K. Yang, P. McEvoy, and M. J. Ammann, "Amorphous silicon solar Vivaldi antenna," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 893-896, 2015.
[22] S. Shynu, M. J. R. Ons, P. McEvoy, M. J. Ammann, S. J. McCormack, and B. Norton, "Integration of microstrip patch antenna with polycrystalline silicon solar cell," IEEE Transactions on Antennas and Propagation, vol. 57, pp. 3969-3972, 2009.
[23] M. Roo-Ons, S. Shynu, M. Ammann, S. McCormack, and B. Norton, "Transparent patch antenna on a-Si thin-film glass solar module," Electronics letters, vol. 47, pp. 85-86, 2011.
[24] A. El Yassini, S. Ibnyaich, S. Chabaa, and A. Zeroual, "Miniaturized broadband‐multiband planar antenna with a symmetric quarter‐circular ground plane for WLAN/WiMAX standards," Microwave and Optical Technology Letters, vol. 62, pp. 2953-2964, 2020.
[25] H. Nornikman, O. Kean, A. Hisham, A. Abidin, S. Yik, and O. Azlishah, "Design Coplanar Waveguide-fed Circular Patch Antenna with Edge Couple Split Ring Resonator Structure for Dual-band Application," Aust. J. Basic Appl. Sci, vol. pp. 262-269, 2014.
[26] A. Kumar, P. Naidu, V. Kumar, and A. K. Ramasamy, "Design & development of compact uniplanar semi-hexagonal ACS fed multi-band antenna for portable system application," Progress In Electromagnetics Research M, vol. 60, pp. 157-167, 2017.
[27] A. Karimbu Vallappil, B. A. Khawaja, M. K. A. Rahim, M. N. Iqbal, and H. T. Chattha, "Metamaterial-Inspired Electrically Compact Triangular Antennas Loaded with CSRR and 3× 3 Cross-Slots for 5G Indoor Distributed Antenna Systems," Micromachines, vol. 13, pp. 198, 2022.
[28] B. Gebremichael, G. Alemu, and G. T. Mola, "Conductivity of CH3NH3PbI3 thin film perovskite stored in ambient atmosphere," Physica B: Condensed Matter, vol. 514, pp. 85-88, 2017.
校內:2027-08-07公開