簡易檢索 / 詳目顯示

研究生: 蘇冠瑋
Su, Kuan-Wei
論文名稱: 低能離子束輔助濺鍍奈米矽晶氧化矽薄膜之研究
Research of Nanocrystalline Silicon Oxide Thin Film by Low-Energy Ion-Beam Assisted Sputtering
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 108
中文關鍵詞: 奈米矽晶富矽氧化薄膜離子源光激發螢光
外文關鍵詞: Si nanocrystal, Silicon rich oxide film, Ion source, Photoluminescence
相關次數: 點閱:103下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主題使用低能離子束輔助濺鍍奈米矽晶富矽氧化薄膜,以先濺鍍沉積再進行離子束輔助轟擊方式控制薄膜條件,藉由材料物性與光電特性分析,確認奈米矽晶的成長機制,實現富矽氧化薄膜發光與其現象探討,了解離子源所扮演的角色。
    論文研究分為三部分:一為低能離子源在富矽氧化薄膜系統中的影響,二為低能離子源在富矽氧化物/二氧化矽薄膜系統中的影響,三為兩系統之光激發螢光現象探討。
    研究結果顯示,經離子源輔助濺鍍之富矽氧化薄膜,因低能量離子源的轟擊產生發光缺陷,退火前即可產生室溫下肉眼可見的藍光(氧分壓3.2E-5 Torr與4.1E-5 Torr)及紅光(氧分壓8.8E-5 Torr),此成果代表著室溫製程的實現。而在退火後可產生小而密的奈米矽晶分佈,顯示低能離子源可有效控制其尺寸密度,並使發光強度更為提升。
    最後由光激發螢光光譜變化,推測藍光波段為與矽氧鍵結有關的輻射復合缺陷貢獻發光,紅光波段主要為奈米矽晶量子侷限效應導致發光。

    This study took low-energy ion-beam assisted sputtering (IBAS) system to synthesize Si nanocrystals in silicon rich oxide (SRO) film. Films were deposited by sputtering first and ion beam bombardment was conducted later to control the film properties. By analyzing physical and optical properties of materials, growing mechanism of nanocrystals was confirmed, light emission from silicon oxide film was realized, and the role of ion source would be investigated.
    There were three parts in research topic: First, effect of low energy ion source on SRO thin film system. Second, effect of low energy ion source on SRO/SiO2 thin film system. Third, photoluminescence of SRO and SRO/SiO2 thin film.
    According to experimental results, SRO films with IBAS had strong blue and red light emission in the room temperature before annealing, due to the formation of emission defects by ion beam bombardment. This achievement indicated the realization of room temperature processing. After annealing, small and hight density Si nanocrystals were found. This evidence showed low energy ion source controlled nanocrystals size and density effectively, and enhanced light emission.
    From photoluminescence spectra, the blue emission originated in radiative recombination defects which were related to Si-O bonds, and the red emission was attributed to quantum confinement effect from Si nanocrystals.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 論文架構 4 第二章 文獻回顧與理論基礎 5 2-1 矽材料特性 5 2-1-1 量子點特性 5 2-1-2 間接能隙材料 7 2-1-3 矽氧化型態 9 2-2 奈米矽晶量子效應 10 2-2-1 量子侷限效應 10 2-2-2 表面能態效應 10 2-3 奈米矽晶薄膜鍍製 12 2-3-1 濺鍍原理 12 2-3-2 離子源功能與運作原理 13 2-3-3 離子束輔助鍍膜 16 2-3-4 各式製程方式 16 2-4 奈米矽晶發光現象 17 2-4-1 光激發螢光原理 17 2-4-2 發光二極體介紹 18 第三章 實驗步驟與儀器量測 21 3-1 實驗流程圖 21 3-2 材料製程 22 3-2-1 矽基板準備與清洗 22 3-2-2 離子束輔助濺鍍富矽氧化薄膜 23 3-2-3 離子束輔助濺鍍富矽氧化物/二氧化矽薄膜 25 3-2-4 薄膜後退火 27 3-3 物性與光電特性分析 30 3-3-1 高解析X光繞射分析 (HRXRD) 30 3-3-2 高解析穿透式電子顯微鏡分析 (HRTEM) 32 3-3-3 高解析X光光電子能譜分析 (HRXPS) 35 3-3-4 光激發螢光量測 (PL) 36 第四章 結果與討論 38 4-1低能離子源在富矽氧化薄膜系統中的影響 38 4-1-1 實驗參數 38 4-1-2 濺鍍速率分析 38 4-1-3 退火效應分析 41 4-1-4 奈米矽晶微結構分析 44 4-1-5 奈米矽晶分佈分析 47 4-1-6 奈米矽晶尺寸與密度分析 49 4-1-7 富矽氧化薄膜結晶性分析 58 4-1-8 富矽氧化薄膜成分與鍵結分析 63 4-1-9 富矽氧化薄膜殘留應力分析 70 4-1-10 結論 71 4-2低能離子源在富矽氧化物/二氧化矽薄膜系統中的影響 72 4-2-1 實驗參數 72 4-2-2 濺鍍速率分析 73 4-2-3 退火效應分析 74 4-2-4 奈米矽晶分佈分析 75 4-2-5 多層薄膜結晶性與奈米矽晶尺寸密度分析 76 4-2-6 基板溫度效應分析 79 4-2-7 多層薄膜成分與鍵結分析 81 4-2-8 結論 83 4-3富矽氧化薄膜與富矽氧化物/二氧化矽薄膜發光現象探討 84 4-3-1 富矽氧化薄膜PL光譜分析-以氧分壓3.2E-5 Torr為例 84 4-3-2 富矽氧化薄膜PL光譜分析-以氧分壓4.1E-5 Torr為例 86 4-3-3 富矽氧化薄膜PL光譜分析-以氧分壓8.8E-5 Torr為例 88 4-3-4 富矽氧化薄膜PL光譜分析-氧化效應 90 4-3-5 富矽氧化物/二氧化矽薄膜PL光譜分析-退火效應 93 4-3-6 富矽氧化物/二氧化矽薄膜PL光譜分析-離子源效應 94 4-3-7 富矽氧化物/二氧化矽薄膜PL光譜分析-厚度效應 96 4-3-8 富矽氧化物/二氧化矽薄膜PL光譜分析-基板溫度效應 97 4-3-9 結論 98 第五章 總結論與未來規劃 100 5-1 總結論 100 5-2 未來規劃 101 參考文獻 102

    [1] J. J. Si, L. W. Guo, Q. Q. Yang, J. H. Gao, D. Teng, J. M. Zhou, and Q. M. Wang, “Improvement of photoluminescence of strained SiGe/Si layers on patterned Si substrate”, Solid State Communications, vol. 112, pp. 255–259 (1999).
    [2] C. Eisele, M. Berger, M. Nerding, H.P. Strunk, C.E. Nebel, and M. Stutzmann, “Laser-crystallized microcrystalline SiGe alloys for thin film solar cells”, Thin Solid Films, vol. 427, pp.176–180 (2003).
    [3] J. Y. Zhang, Y. H. Ye, X. L. Tan, and X. M. Bao, “Voltage-controlled electroluminescence from SiO2 films containing Ge nanocrystals and its mechanism”, Applied Physics A, vol. 71, pp. 299–303 (2000).
    [4] A. Parisini, R. Angelucci, L. Dori, A. Poggi, P. Maccagnani, G. C. Cardinali, G. Amato, G. Lerondel, and D. Midellino, “TEM characterisation of porous silicon”, Micron, vol. 31, pp. 223–230 (2000).
    [5] A. G. Cullis, and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon”, Nature, vol. 353, pp. 335–338 (1991).
    [6] C. Ternon, F. Gourbilleau, X. Portier, P. Voivenel, and C. Dufour, “An original approach for the fabrication of Si/SiO2 multilayers using reactive magnetron sputtering”, Thin Solid Films, vol. 419, pp. 5–10 (2002).
    [7] F. Gourbilleau, P. Voivenel, X. Portier, and R. Rizk, “A novel method for the deposition of Si-SiO2 superlattices”, Microelectronics Reliability, vol. 40, pp. 889–892 (2000).
    [8] Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices”, Nature, vol. 378, p. 258 (1995).
    [9] T. Zheng, and Z. Li, “The present status of Si/SiO2 superlattice research into optoelectronic applications”, Superlattices and Microstructures, vol. 31, pp. 285–288 (2002).
    [10] C. L. Heng, B. R. Zhang, Y. P. Qiao, Z. C. Ma, W. H. Zong, and G. G. Qin, “Influences of thicknesses of SiO2 layers on electroluminescence from amorphous Si/SiO2 superlattices”, Physica B, vol. 270, pp. 104–109 (1999).
    [11] Z. Ma, L. Wang, K. Chen, W. Li, L. Zhang, Y. Bao, X. Wang, J. Xu, X. Huang, and D. Feng, Journal of Non-Crystalline Solids, vol. 302, pp. 648–652 (2002).
    [12] D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattice”, Physical Review Letters, vol. 76, pp.539-541 (1996).
    [13] D. J. Lockwood, J. M. Baribeau, M. Noel, J. C. Zwinkels, B. J. Fogal, and S. K. O’Leary, “Optical absorption in an amorphous silicon superlattice grown by molecular beam epitaxy”, Solid State Communications, vol. 122, pp. 271–275 (2002).
    [14] M. Schmidt, J. Heitmann, R. Scholz, and M. Zacharias, Journal of Non-Crystalline Solids, vol. 302, pp. 678–682 (2002).
    [15] E. C. Cho, J. Xia, A. G. Aberle, and M. A. Green, “Antireflection and surface passivation behaviour of SiO2/Si/SiO2 quantum wells on silicon”, Solar Energy Materials and Solar Cells, vol. 74, pp. 147–154 (2002).
    [16] X. Portier, C. Ternon, F. Gourbilleau, C. Dufour, and R. Rizk, “Anneal temperature dependence of Si/SiO2 superlattices photoluminescence”, Physica E, vol. 16, pp. 439–444 (2003).
    [17] M. Modreanua, M. Gartnerb, E. Aperathitisc, N. Tomozeiud, M. Androulidakic, D. Cristeae, and P. Hurleya, “Investigation on preparation and physical properties of nanocrystalline Si/SiO2 superlattices for Si-based light-emitting devices”, Physica E, vol. 16, pp. 461–466 (2003).
    [18] N. M. Park, T. S. Kim, and S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, Applied Physics Letters, vol. 78, pp. 2575-2577 (2001).
    [19] T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3”, Applied Physics Letters, vol. 88, p. 123102 (2006).
    [20] Z. T. Kang, B. Arnold, C. J. Summers, and B. K. Wagner, “Synthesis of silicon quantum dot buried SiOx films with controlled luminescent properties for solid-state lighting”, Nanotechnology, vol. 17, pp. 4477-4482 (2006).
    [21] M. Zacharias, J. Heitmann, R. Scholz, and U. Kahler, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach”, Applied Physics Letters, vol. 80, p. 661 (2002).
    [22] M. Kulakci, U. Serincan, and R. Turan, “Electroluminescence generated by a metal oxide semiconductor light emitting diode (MOS-LED) with Si nanocrystals embedded in SiO2 layers by ion implantation”, Semiconductor Science and Technology, vol. 21, pp. 1527-1532 (2006).
    [23] J. Y. Wu and C. C. Lee, “Effect of the working gas of the ion-assisted source on the optical and mechanical properties of SiO2 films deposited by dual ion beam sputtering with Si and SiO2 as the starting materials”, Applied Optics, vol. 45, pp. 3510-3515 (2006).
    [24] A. H. Al-Bayati, K. G. Orrman-Rossiter, R. Badheka, and D. G. Armour, “Radiation damage in silicon (001) due to low energy (60-510eV) argon ion bombardment”, Surface Science, vol. 237, pp. 213-231 (1990).
    [25] S. L. Ku, C. C. Lee, “Surface characterization and properties of silicon nitride films prepared by ion-assisted deposition”, Surface & Coatings Technology, vol. 204, pp. 3234-3237 (2010).
    [26] T. Y. Kim, N. M. Park, K.H. Kim, and G. Y. Sung, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films”, Applied Physics Letters, vol. 85, p. 5356 (2004).
    [27] C. Huh, K. H. Kim, B. K. Kim, W. Kim, H. Ko, C. J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures”, Advanced Materials, vol. 22, pp. 5058-5062 (2010).
    [28] R. C. Ashoori, “Electron in artificial atoms”, Nature, vol. 379, pp. 413-419 (1996).
    [29] X. L. Wu and F. S. Xue, “Optical transition in discrete levels of Si quantum dots”, Applied Physics Letters, vol. 84, pp. 2808-2810 (2004).
    [30] A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals”, Journal of Physical Chemistry, vol. 100, pp. 13226-13239 (1996).
    [31] B. Y. Park, S. Lee, K. Park, C. H. Bae, and S. M. Park, “Enhancement of light emission from silicon nanocrystals by post-O2-annealing process”, Journal of Applied Physics, vol. 107, p. 014314-2 (2010).
    [32] Y. Xie, X. L. Wu, T. Qiu, P. K. Chu, and G. G. Siu, “Luminescence properties of ultrasmall amorphous Si nanoparticles with sizes smaller than 2 nm”, Journal of Crystal Growth, vol. 304, pp. 476-480 (2007).
    [33] Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell”, Physical Review B, vol. 48, pp. 4883-4886 (1993).
    [34] D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. Mccaffrey, and A. Wang, “Optical properties of porous silicon”, Canadian Journal of Physics, vol. 70, p. 1184 (1992).
    [35] B. H. Kim, C. H. Cho, T. W. Kim, N. M. Park, G. Y. Sung, and S. J. Park, “Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4”, Applied Physics Letters, vol. 86, p. 091908-3 (2005).
    [36] H. R. Kaufman, R. S. Robinson, and R. I. Seddon, “end-Hall ion source”, J. Vacuum Science and Technology, vol. A5, pp. 2081-2084 (1987).
    [37] H. R. Kaufman and R. S. Robinson, “Operation of broad-beam sources”, Commonwealth Scientific Corporation, Alexandria, p. 57 (1987).
    [38] C. C. Lee and S. L. Ku, “Optical and structural properties of SiOx films from ion-assisted deposition”, Thin Solid Films, vol. 518, pp. 4804-4808 (2010).
    [39] U. Kahler and H. Hofmeister, “Visible light emission from Si nanocrystalline composites via reactive evaporation of SiO”, Optical Materials, vol. 17, pp. 83-86 (2001).
    [40] M. Zacharias and P. Streitenberger, “Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces”, Physical Review B, vol. 62, pp. 8391-8396 (2000).
    [41] A. G. Imer, I. Yildiz, and R. Turan, “Fabrication of Si nanocrystals in an amorphous SiC matrix by magnetron sputtering”, Physica E, vol. 42, pp. 2358-2363 (2010).
    [42] K. K. Smith, “Photoluminescence of semiconductor materials”, Thin Solid Films, vol. 84, pp. 171-182 (1981).
    [43] C. Y. Hsiao, C. F. Shih, K. W. Su, H. J. Chen, S. W. Fu, “Self-assembled Si/SiO2 superlattice in Si-rich oxide films”, Applied Physics Letters, vol. 99, p. 053115 (2011).
    [44] R. Huang, K. Chen, P. Han, H. Dong, and X. Wang, “Strong green-yellow electroluminescence from oxidized amorphous silicon nitride light-emitting devices”, Applied Physics Letters, vol. 90, p. 093515 (2007).
    [45] M. George, “Craford visible light-emitting diodes: past, present, and very bright future”, MRS Bulletin, vol. 25, p. 27 (2000).
    [46] I. Stenger, A. Abramov, and C. Barthou, “Strong orange/red electroluminescence from hydrogenated polymorphous silicon carbon light-emitting devices”, Applied Physics Letters, vol. 92, p. 241114-2 (2008).
    [47] W. Kern and D. Puotinen, RCA Review, vol. 31, p.187 (1970).
    [48] S. K. Sahari, J. C. H. Sing, K. A. Hamid, “The effects of RCA clean variables on particle removal efficiency”, World Academy of Science, Engineering and Technology, vol. 50, pp. 626-628 (2009).
    [49] J. H. Xu, B. M. Moon, and K. V. Rao, “Study of the resputtering effect during rf-sputter deposition of YBCO films”, Journal of Materials Research, vol. 10, pp. 798-802 (1995).
    [50] S. Berg and I. Katardjiev, “Resputtering effects during ion beam assisted deposition and the sputter yield amplification effect”, Surface and Coatings Technology, vol. 84, pp. 353-362 (1996).
    [51] S. D. Kosowsky, P. S. Pershan, K. S. Krisch, J. Bevk, M. L. Green, D. Brasen, L. C. Feldman, and P. K. Roy, “Evidence of annealing effects on a high-density Si/SiO2 interfacial layer”, Applied Physics Letters, vol. 70, pp. 3119-3121 (1997).
    [52] O. M. Feroughi, C. Sternemann, “Phase separation and Si nanocrystal formation in bulk SiO studied by x-ray scattering”, Applied Physics Letters, vol. 96, p. 081912-1 (2010).
    [53] T. Hama, T. S. Iwayama, D. E. Hole, and I. W. Boyd, “RTA effects on the initial formation of Si nanocrystals in SiO2”, Report of Research Center of Ion Beam Technology, vol. 23, pp. 51-56 (2005).
    [54] M. A. Elkhakani, “Effect of rapid thermal annealing on both the stress and the bonding states of a‐SiC:H films”, Journal of Applied Physics, vol. 74, pp. 2834-2840 (1993).
    [55] H. Okamoto, “O-Si (oxygen-silicon)”, Journal of Phase Equilibria and Diffusion, vol. 28, p. 309 (2007).
    [56] C. H. Ma, J. H. Huang, and H. Chen, “Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction”, Thin Solid Films, vol. 418, pp. 73-78 (2002).
    [57] J. Robertson and M. J. Powell, Applied Physics Letters, vol. 44, p. 040415 (1984).
    [58] H. Nishikawa, E. Watanabe, and D. Ito, “Photoluminescence study of defects in ion-implanted thermal SiO2 films”, Journal of Applied Physics, vol. 78, pp. 842-846 (1995).
    [59] G. R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2”, Journal of Applied Physics, vol. 97, p. 094306 (2005).
    [60] S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, and J. C. Barbour, “Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2”, Journal of Applied Physics, vol. 86, p. 396 (1999).

    下載圖示 校內:2017-07-23公開
    校外:2017-07-23公開
    QR CODE