簡易檢索 / 詳目顯示

研究生: 李宗霖
Lee, Chung-Lin
論文名稱: 基於漸進線性特徵之RBPF實現同步定位與建構地圖及其於伴隨行走之應用
Piecewise Linear Feature Based RBPF SLAM for Home Service Robot and Its Application to Accompanying Walk
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 84
中文關鍵詞: RBPF同步定位與建立地圖漸進線性特徵擷取與人伴隨行走
外文關鍵詞: RBPF, SLAM, Piecewise Linear Feature Extraction, Accompanying Walk
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於居家服務型機器人來說,同步定位與建立地圖是一個十分重要且必須具備之功能。一般而言,如果機器人已擁有精準的環境地圖,那麼定位的功能便易於實現;同樣的如果機器人已經有了準確的定位功能,要建立地圖也並不困難。然同步定位與建立地圖是一個雞生蛋,蛋生雞的問題,機器人必須要同時完成定位與地圖建立。本論文主旨在於提出漸進線性Rao-Blackwellised Particle Filter (RBPF)同步定位與建立RBPF、漸進線性特徵擷取及粒子自我定位演算法。在RBPF架構當中,每一個粒子都擁有自己獨立的一張地圖,因此可以提升地圖的準確度。為了建立更精簡,記憶體消耗更小的地圖,本篇論文採用漸進線性特徵,當作同步定位與建立地圖的特徵,並加入粒子自我定位的演算法,有效減少粒子數,以減少計算資源的消耗並且得到更為準確的估測結果。隨著機器人領域的發展,機器人如何與人互動成為重要的課題,因此機器人與人伴隨行走的方法,成為近年來受歡迎的研究項目。本論文結合了雷射資訊與RGB-D的色彩與深度影像,搭配地圖的資訊,追蹤使用者的位置,並利用泰勒級數展開之速度估測器,估測出使用者移動方向與速度,預測使用者下一步的位置,以維持使用者與居家服務型機器人的相對位置,因應不同地理環境,達成伴隨行走的目的。最後,實驗結果除了展現漸進線性RBPF同步定位與建立地圖方法的精確性,也驗證了與人伴隨行走策略的有效性。

    Simultaneous localization and mapping is an important function for home service robots. Generally, if the environment map is known, then self-localization for a robot is easy to implement. Likewise, if the robot has precise location of its position, establishing the environment map would be facile. However, simultaneous localization and mapping (SLAM) is like the chicken and egg conundrum, the robot has to build map and localize its position at the same time. This thesis presents Piecewise Linear Feature based SLAM (PLFSLAM) method that includes Rao-Blackwellised particle filter (RBPF), piecewise linear feature extraction, and scan matching algorithm. In PLFSLAM, piecewise linear features are extracted as the map features, and each particle carries an individual map. Besides, it adds scan matching algorithm that can reduce the number of particles to achieve accurate estimation of the robot position and build compact map with lower memory consumption. There are many applications of SLAM, in this thesis, we utilize it to implement the accompanying walk with human being. Accompanying walk has become a popular application in human-robot interaction. As known the environment map, the robot can plan a walking path while maintain the relative position with human. A RGB-D sensor is combined with laser information to track the person, and the Taylor series expansion (TSE) velocity estimator is used to estimate the velocity and to predict the pose in next time step of the person. The experimental results demonstrate the accuracy of the proposed PLFSLAM and the effectiveness of accompanying walk with human being.

    摘要 I ABSTRACT II ACKNOWLEDGEMENTS III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VIII LIST OF VARIABLES IX CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 RELATED WORK 2 1.2.1 Simultaneous localization and mapping 2 1.2.2 Human-robot accompanying walk 4 1.3 THESIS ORGANIZATION 4 CHAPTER 2 PIECEWISE LINEAR FEATURE BASED RBPF SLAM 6 2.1 INTRODUCTION 6 2.2 FORMULATION OF SLAM 7 2.2.1 The formulation of SLAM problem 7 2.2.2 Observation model 9 2.2.3 Motion model 12 2.3 RAO-BLACKWELLIZED PARTICLE FILTER FOR SLAM 14 2.3.1 Feature extraction 15 2.3.2 Predict the robot pose by the motion model 21 2.3.3 Rotate and shift 21 2.3.4 Map Matching 22 2.3.5 Estimate the robot pose with scan matching 27 2.3.6 Update map 30 2.3.7 Erase unsighted features 32 2.3.8 Valuate the weight of each particle 32 2.3.9 Resample 33 CHAPTER 3 HUMAN-ROBOT ACCOMPANYING WALK STRATEGIES 34 3.1 INTRODUCTION 34 3.2 HUMAN LEGS DETECTION AND TRACKING WITH THE LASER RANGE FINDER 35 3.3 INTEGRATION WITH KINECT AND LOCALIZATION INFORMATION 38 3.4 PREDICTION OF HUMAN SPEED 40 3.5 MAINTAIN RELATIVE POSITION STRATEGIES 41 3.5.1 Following Strategy 42 3.5.2 Leading Strategy 43 3.6 SIMULATION RESULTS 49 CHAPTER 4 EXPERIMENTS 54 4.1 INTRODUCTION 54 4.2 EXPERIMENTAL SETTING 55 4.2.1 Robot May Ⅱ 55 4.2.2 Experimental environment 57 4.3 EXPERIMENTAL RESULTS OF THE SLAM 58 4.4 EXPERIMENTS OF ACCURACY 62 4.4.1 Experiments of Map Accuracy 62 4.4.2 Experiments of Localization Accuracy 65 4.5 NAVIGATION TASK 67 4.6 EXPERIMENTS OF HUMAN-ROBOT ACCOMPANYING WALK 70 4.6.1 Experiments of following strategy of accompanying walk 70 4.6.2 Experiments of leading strategy of accompanying walk 73 CHAPTER 5 CONCLUSION 77 5.1 CONCLUSION 77 5.2 FUTURE WORKS 78 REFERENCES 79

    [1]. F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard, “An Evaluation of the RGB-D SLAM System,” in Proceeding of IEEE International Conference on Robotics and Automation, pp. 1691-1696, 2012.
    [2]. J. Sola, T. Vidal-Calleja, J. Civera, and J. M. Montiel, “Impact of Landmark Parametrization on Monocular EKF-SLAM with Points and Lines,” International Journal of Computer Vision, vol. 97, no. 3, pp. 339-368, 2012.
    [3]. D. Wang, H. Liang, T. Mei, H. Zhu, J. Fu, and X. Tao, “Lidar Scan Matching EKF-SLAM using the Differential Model of Vehicle Motion,” in Proceeding of IEEE Intelligent Vehicles Symposium, pp. 908-912, 2013.
    [4]. S. Wen, X. Chen, C. Ma, H. K. Lam, and S. Hua, “The Q-Learning Obstacle Avoidance Algorithm Based on EKF-SLAM for NAO Autonomous Walking under Unknown Environments,” Robotics and Autonomous Systems, vol. 72, pp. 29-36, 2015.
    [5]. S. Ahn, M. Choi, J. Choi, and W. K. Chung, “Data Association using Visual Object Recognition for EKF-SLAM in Home Environment,” in Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2588-2594, 2006.
    [6]. S. Ahn, J. Choi, N. L. Doh, and W. K. Chung, “A Practical Approach for EKF-SLAM in an Indoor Environment: Fusing Ultrasonic Sensors and Stereo Camera,” Autonomous Robots, vol. 24, no. 3, pp. 315-335, 2008.
    [7]. H. C. Lee, S. H. Lee, M. H. Choi, and B. H. Lee, “Probabilistic Map Merging for Multi-Robot RBPF-SLAM with Unknown Initial Poses,” Robotica, vol. 30, no. 2, pp. 205-220, 2012.
    [8]. S. Nasuriwong and P. Yuvapoositanon “Posterior Elimination Fast Look-Ahead Rao-Blackwellized Particle Filtering for Simultaneous Localization and Mapping,” Procedia Computer Science, vol. 86, pp. 261-264, 2016.
    [9]. B. D. Gouveia, D. Portugal, and L. Marques, “Speeding up Rao-Blackwellized Particle Filter SLAM with a Multithreaded Architecture,” in Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1583-1588, 2014.
    [10]. M. Li, R. Lin, H. Wang, and H. Xu, “An Efficient SLAM System Only using RGBD Sensors,” in Proceeding of IEEE International Conference on Robotics and Biomimetics, pp. 1653-1658, 2013.
    [11]. X. L. Tang, L. M. Li, and B. J. Jiang, “Mobile Robot SLAM Method Based on Multi-Agent Particle Swarm Optimized Particle Filter,” The Journal of China Universities of Posts and Telecommunications, vol. 21, no. 6, pp. 78-86, 2014.
    [12]. H. Durrant-Whyte and T. Bailey, “Simultaneous Localization and Mapping: Part I,” IEEE Robotics and Automation Magazine, vol. 13, no. 2, pp. 99-110, 2006.
    [13]. R. O. Castle, G. Klein, and D. W. Murray, “Combining Monoslam with Object Recognition for Scene Augmentation using a Wearable Camera,” Image and Vision Computing, vol. 28, no. 11, pp. 1548-1556, 2010.
    [14]. S. A. Sadat, K. Chutskoff, D. Jungic, J. Wawerla, and R. Vaughan, “Feature-Rich Path Planning for Robust Navigation of Mavs with Mono-SLAM,” in Proceeding of IEEE International Conference on Robotics and Automation, pp. 3870-3875, 2014.
    [15]. L. Zhao, S. Huang, and G. Dissanayake, “Linear Monoslam: A Linear Approach to Large-Scale Monocular SLAM Problems,” in Proceeding of IEEE International Conference on Robotics and Automation, pp. 1517-1523, 2014.
    [16]. C. Audras, A. Comport, M. Meilland, and P. Rives, “Real-Time Dense Appearance-Based SLAM for RGB-D Sensors,” in Proceeding of Australasian Conference on Robotics and Automation, vol. 2, 2011.
    [17]. J. D. Fossel, K. Tuyls, and J. Sturm, “2D-SDF-SLAM: A Signed Distance Function Based SLAM Frontend for Laser Scanners,” in Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1949-1955, 2015.
    [18]. M. Djehaich, H. Ziane, N. Achour, R. Tiar, and N. Ouadah, “SLAM-ICP with a Boolean Method Applied on a Car-Like Robot,” in Proceeding of International Symposium on Programming and Systems, pp. 116-121, 2013.
    [19]. R. Tiar, N. Ouadah, O. Azouaoui, M. Djehaich, H. Ziane, and N. Achour, “ICP-SLAM Methods Implementation on a Bi-Steerable Mobile Robot,” in Proceeding of International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics, pp. 1-6, 2013.
    [20]. Y. H. Choi, T. K. Lee, and S. Y. Oh, “A Line Feature Based SLAM with Low Grade Range Sensors using Geometric Constraints and Active Exploration for Mobile Robot,” Autonomous Robots, vol. 24, no. 1, pp. 13-27, 2008.
    [21]. A. P. Gee and W. Mayol-Cuevas, “Real-time Model-based SLAM using Line Segments,” in Proceeding of International Symposium on Visual Computing, pp. 354-363, 2006.
    [22]. H. J. Sohn and B. K. Kim, “An Efficient Localization Algorithm Based on Vector Matching for Mobile Robots using Laser Range Finders,” Journal of Intelligent and Robotic Systems, vol. 51, no. 4, pp. 461-488, 2008.
    [23]. H.-M. Gross, H.-J. Boehme, C. Schroeter, S. Mueller, A. Koenig, Ch. Martin, M. Merten, and A. Bley, “Shopbot: Progress in Developing an Interactive Mobile Shopping Assistant for Everyday Use,” in Proceeding of IEEE International Conference on Systems, Man, and Cybernetics, pp. 3471-3478, 2008.
    [24]. J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, “Towards Robotic Assistants in Nursing Homes: Challenges and Results,” Robotics and Autonomous Systems, vol. 42, no. 3-4, pp. 271-281.
    [25]. Y. Morales, T. Kanda, and N. Hagita, “Walking Together: Side By Side Walking Model for an Interacting Robot,” Journal of Human-Robot Interaction, vol. 3, no. 2, pp. 51-73, 2014.
    [26]. A. Garrell and A. Sanfeliu, “Model Validation: Robot Behavior in People Guidance Mission using DTM Model and Estimation of Human Motion Behavior,” in Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5836-5841 2010.
    [27]. M. Costa, “Interpersonal Distances in Group Walking,” Journal of Nonverbal Behavior, vol. 34, no. 1, pp. 15-26, 2010.
    [28]. K.-C. Cheng, Design and Implementation of SLAM and Behavior Strategy for Home Service Robot, M.S. Thesis, Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan, 2010.
    [29]. B. W. Kuo, H. H. Chang, Y. C. Chen, and S. Y. Huang, “A Light-and-fast Slam Algorithm for Robots in Indoor Environments using Line Segment Map,” Journal of Robotics, 2011.
    [30]. H. J. Sohn and B. K. Kim, “VecSLAM: An Efficient Vector-based SLAM Algorithm for Indoor Environments,” Journal of Intelligent and Robotic Systems, vol. 56, no. 3, pp. 301-318, 2009.
    [31]. G. Grisetti, C. Stachniss, and W. Burgard, “Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling,” in Proceeding of IEEE International Conference on Robotics and Automation, pp. 2432-2437, 2005.
    [32]. J. S. Liu, “Metropolized Independent Sampling with Comparisons to Rejection Sampling and Importance Sampling,” Statistics and Computing, vol. 6, no. 2, pp. 113-119, 1996.
    [33]. W. Chung, H. Kim, Y. Yoo, C. B. Moon, and J. Park, “The Detection and Following of Human Legs through Inductive Approaches for a Mobile Robot with a Single Laser Range Finder,” IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3156-3166, 2012.
    [34]. R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of Algorithms for Velocity Estimation from Discrete Position versus Time Data,” IEEE Transactions on Industrial Electronics, vol. 39, no. 1, pp. 11-19, 1992.
    [35]. Kinect for Xbox One. [Online] Available: http://www.xbox.com/zh-TW/xbox-one/accessories/kinect-for-xbox-one#fbid=8XhiEgvbKDU.
    [36]. LMS1. SICK. [Online] Available: https://www.sick.com/tw/zf/product-portfolio/detection-and-ranging-solutions/2d/lms1xx/c/g91901.
    [37]. Robotis. [Online] Available: http://en.robotis.com/index/.
    [38]. T.-H. S. Li, M. H. Lee, C. W. Lin, G. H. Liou, and W. C. Chen, “Design of Autonomous and Manual Driving System for 4WIS4WID Vehicle,” IEEE Access, vol. 4, pp. 2256-2271, 2016.

    下載圖示 校內:2022-07-01公開
    校外:2022-07-01公開
    QR CODE