簡易檢索 / 詳目顯示

研究生: 曾資凱
Tseng, Tzu-Kai
論文名稱: 轉爐石瀝青混凝土績效和成本分析
Performance and Cost Analysis of Asphalt Concrete Mixed with Basic Oxygen Furnace Slag
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系碩士在職專班
Department of Civil Engineering (on the job class)
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 152
中文關鍵詞: 多孔隙瀝青混凝土(PAC)轉爐石(BOF)鋪面績效透水量噪音量車轍量平坦度Clegg衝擊抗滑度
外文關鍵詞: Porous Asphalt Concrete (PAC), Basic Oxygen Furnace Slag(BOF), Pavement Performance, Functionality, Durability, Safety.
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內鋼鐵業所生產轉爐石(Basic Oxygen Furnace Slag, BOF)之資源再利用是產官學界重視之課題,本研究利用轉爐石作為粗粒料,實際應用於道路鋪面,包含多孔隙瀝青混凝土(Porous Asphalt Concrete, PAC)、密級配瀝青混凝土(Dense Graded Asphalt Concrete, DGAC)、開放級配摩擦層 (Open Graded Friction Course, OGFC)等,藉由不同鋪面比較其長期和短期績效差異,包含安全性、耐久性與功能性評估;同時,藉由生命週期成本分析(Life Cycle Cost Analysis, LCCA),探討不同道路維修方案的可行性與差異性,提供決策的思考完整性。研究結果顯示瀝青混合料使用轉爐石部分取代或全取代粗粒料,仍可保持道路鋪面車轍量、平坦度、衝擊值、抗滑度及透水量等績效要求,並且於40年分析年限中轉爐石較天然粒料具有較佳之經濟效益。另本研究選擇交通年增量、折現率、用路人時間價值、施工成本、和路面整修頻率之等變數,進行敏感度分析,藉以比較各維修方案之用路人成本現值與總淨現值之變化趨勢。

    The resource recycling of the Basic Oxygen Furnace Slag (BOF) produced by the domestic steel industry is a topic that the university-industry-government field has been focusing on. This study uses converter stone as a coarse material to apply to road pavements, including Porous Asphalt Concrete (PAC), Dense Graded Asphalt Concrete (DGAC), Open Graded Friction Course (ODCC), etc. Long-term and short-term performance differences between different pavements will also be compared safety, durability and functional evaluation included:at the same times, this study also uses Life Cycle Cost Analysis (LCCA) to discuss the feasibility and the difference of various road maintenance programs in order to achieve the integrity of decision making. The results show that the although the coarse grained materials are either partly or completely replaced by the converter stone in asphalt mixture, the road pavement can still maintain the performance requirements in regards to rutting, flatness, impact value, skid resistance and water permeability. Besides, within the 40 years of the life-cycle analysis, the BOF generates more economic benefits than natural aggregate. In addition, this study takes the traffic year increment, discount rate, time value of passers-by, construction cost, and road repair frequency to conduct the sensitivity analysis and to compare the trend changes in the present value and the total net present value of the user cost between each maintenance plan.

    摘要……………………………………………………………………………Ⅰ 英文摘要…………………………………………………………………Ⅱ 致謝…………………………………………………………………………Ⅴ 目錄…………………………………………………………………………VI 圖目錄……………………………………………………………………XI 表目錄…………………………………………………………………XVI 第一章 緒論............................1-1 1.1 前言..............................1-1 1.2 研究動機...........................1-2 1.3 研究目的...........................1-3 1.4 研究範圍...........................1-3 1.4.1長期績效…………......................1-3 1.4.2短期績效..........................1-4 第二章 文獻回顧.........................2-1 2.1多孔隙瀝青混凝土(Porous Asphalt Concrete, PAC)………2-1 2.1.1粒料..........................................2-2 2.1.2瀝青………………....................................2-3 2.2 PAC與OGFC之差異性………...........................2-4 2.3 PAC鋪面的功能性(Functionality).................2-4 2.3.1排水效果......................................2-5 2.3.2減噪效果......................................2-6 2.4 轉爐石.........................................2-7 2.4.1 轉爐石化學性質…..............................2-9 2.4.2 轉爐石物理性質…..............................2-10 2.4.3 轉爐石之安定性...............................2-11 2.4.4 轉爐石重金屬溶出.............................2-13 2.5生命週期成本分析(Life Cycle Cost Analysis, LCCA)…2-14 2.6用路人行車時間效益估算...........................2-15 第三章 研究計畫………………………............................3-1 3.1 研究流程........................................3-1 3.2 試驗路段........................................3-5 3.2.1國道1號岡山段改質轉爐石PAC路段...................3-5 3.2.2國道1號南下楠梓交流道第二出口匝道轉爐石OGFC路段………3-7 3.2.3縣道188萬大大橋轉爐石DGAC路段...................3-10 3.3 試驗方法........................................3-12 3.3.1安全性評估:抗滑度試驗……........................3-12 3.3.2耐久性評估:車轍量試驗..........................3-14 3.3.3耐久性評估:平坦度試驗..........................3-15 3.3.4耐久性評估:Clegg衝擊試驗.......................3-17 3.3.5功能性評估:現地透水試驗........................3-18 3.3.6功能性評估:噪音量試驗..........................3-19 3.4生命週期成本分析(LCCA)………….......................3-20 3.4.1鋪面維修方案….……...............................3-20 3.4.2鋪面新建、路面整修及零星修補成本估算.............3-21 3.4.3折現率採用(Discount Rate)......................3-23 3.4.4路面整修與零星維修頻率及工區資料.................3-24 3.4.5交通量及車輛相關資料............................3-28 3.4.6用路人成本……………................................3-31 3.4.7單軸荷重當量值(Equivalent Single Axle Load,ESAL)3-32 第四章結果與討論…………….……….............................4-1 4.1評估路段………………..…………….............................4-1 4.2材料與配合設計…....................................4-2 4.2.1國道1號岡山段改質轉爐石PAC路段……….…….......………....4-2 4.2.2國道1號楠梓交流道第二出口匝道OGFC路段……….........…4-8 4.2.3縣道188萬大大橋DGAC路段.........................4-15 4.2.4轉爐石用量對容積比重影響.........................4-29 4.3國道1號岡山段改質轉爐石PAC路段.....................4-30 4.3.1功能性:透水量….................................4-30 4.3.2功能性:噪音量..................................4-32 4.3.3耐久性:車轍量..................................4-33 4.3.4耐久性:平坦度..................................4-34 4.3.5耐久性:Clegg衝擊值.............................4-35 4.3.6安全性:抗滑度..................................4-36 4.3.7現地狀況.......................................4-37 4.4國道1號楠梓交流道第二出口匝道轉爐石OGFC路段……...….….4-41 4.4.1功能性:透水量..................................4-41 4.4.2功能性:噪音量..................................4-43 4.4.3耐久性:車轍量…………..............................4-43 4.4.4耐久性:平坦度..................................4-44 4.4.5耐久性:Clegg衝擊值.............................4-45 4.4.6安全性:抗滑度..................................4-46 4.4.7現地狀況.......................................4-47 4.5生命週期成本分析(Life Cycle Cost Analysis, LCCA)..4-50 4.5.1維修方案………………………..……….……......................4-50 4.5.2敏感度分析……………..………….….............…..……………………4-57 4.6縣道188萬大大橋DGAC路……..........................4-66 4.6.1耐久性:車轍量.................................4-66 4.6.2耐久性:平坦度.................................4-67 4.6.3安全性:抗滑度.................................4-68 第五章結論與建議……………………………....……………………..............5-1 5.1結論……...........................................5-1 5.1.1國道1號岡山段改質轉爐石PAC路段...................5-1 5.1.2國道1號南下楠梓交流道第二出口匝道轉爐石OGFC路段…..5-2 5.1.3縣道188萬大大橋轉爐石DGAC路段……………..…...........5-3 5.2建議……….........................................5-3 參考文獻...........................................參-1 口試委員提問與建議答覆表………….........…………………………………..附錄1

    中華鋪面工程學會(2010),「轉爐石應用於瀝青混凝土鋪面使用手冊」,中華鋪面工程學會,pp.11~14。
    公共工程施工綱要規範(2013),「第02742章 瀝青混凝土鋪面」,行政院公共工程委員會,pp.14。
    公共工程施工綱要規範(2013),「第02798章 多孔隙瀝青混凝土鋪面」,行政院公共工程委員會,pp.10~11。
    日本道路協會(1997),「排水性鋪裝技術指針(案)」,日本。
    王金鐘 (2005) 「轉爐石作為基底層材料及其工程特性之研究」,博士論文,國立成功大學土木工程系,台南。
    王耀寬 (2008),「轉爐石對多孔隙瀝青混凝土之影響」,碩士論文,國立成功大學土木工程系,台南
    平出純一(1998),「排水性舗装の取り組み」,日本瀝青協會,pp.2~3。
    交通部台灣區國道高速公路局國道視窗月刊(2014),「國道3號碧潭至安坑溪橋路段PAC路面整修工程」,新北市。
    夏明勝(2007),「瀝青混凝土鋪面特性與噪音防制」,臺灣公路工程,第33卷第11期-508。
    彰化縣政府(2011),「彰74線道路延伸可行性評估報告」,彰化縣。
    蔡攀鰲(2004),「瀝青混凝土」三民書局,台北。
    顏如玉 (2014) 「公共建設成本效益分析之社會折現率探討」,財稅研究,第43卷,第1期,第149-162頁。
    Aydilek, A. H. (2015). Geotechnical and Environmental Impacts of Steel Slag Use in Highway Construction. Maryland State Highway Administration, pp. 1–82.
    American Association of State Highway and Transportation Officials (1993). AASHTO Guide for Design of Pavement Structures. Washington, D.C.
    Elisabete, F., P. Paulo, Luís de Picado-Santosb ,and S. Adriana (2009). Traffic Noise Changes due to Water on Porous and Dense Asphalt Surfaces, Road Materials and Pavement Design. Vol.10, pp.587-607.
    Euroslag (2017), http://www.euroslag.com/researchlibrarydownloads/ downloads/ , The EUROSLAG Association, viewed 04 September 2017.
    Hossam, F. H., A. Salim, and T. Ramzi (2005). Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer, Journal of Materials in Civil Engineering. Vol.17, pp.416-422.
    Huber, G. (2000). Performance Survey on Open-Graded Friction Course Mixes, Transportation Research Board, NCHRP Synthesis 284. National Research Council, Washington, D.C.
    Haritonovs,V.,and J. Tihonovs (2013). Use of unconventional aggregates in hot mix asphalt concrete, Construction Science 14. pp.44–49, hhttp://dx.doi.org/10.2478/cons-2013-0007.
    Kandhal, P. S., and G. L. Hoffman (1997). Evaluation of Steel Slag Fine Aggregate in Hot-Mix Asphalt Mixtures, Transportation Research Record, n 1583. pp. 28-36.
    Mohammad, L. N., I. I.Negulescu, Z. Wu, C. Daranga, W. H. Daly, and C. Abadie (2003). Investigation of The Use of Recy-cled Polymer Modified Asphalt Binder in Asphalt Concrete Pavements, Journal of the Association of Asphalt Paving Technologists. Vol.72, pp.551-594.
    Nakanishi, H., K. Asano, and K.Goto (2000). Study on Im-provement in Durability of Porous Asphalt Concrete, Proceeding of Road Engineering and Association of Asian and Australasia. Tokyo, Japan.
    Ohkawa, H., T. Sato, and K. Hokari (1993). Study on the Estimation of Permeability Coefficient of Drain Asphalt, Proceedings of the Japan Society of Civil Engineers. No. 478, pp.101-108.
    Ongel, A., E. Kohler, and J. Harvey (2008). Principal Components Regression of Onboard Sound Intensity Levels, Journal of Transportation Engineering, ASCE. Vol.134, No.11, pp.459-466.
    Panda, M. and M. Mazumdar (1999). Engineering Properties of EVA-Modified Bitumen Binder for Paving Mixes, Journal of Materials in Civil Engineering. Vol.11, pp.131-137.
    Pasetto, M. (2000), Porous Asphalt Concretes with Added Microfibres, 2nd Eurasphalt & Eurobitumen Congress, Beacelona, Spain, pp.438-447.
    Tan, S. A., T. F. Fwa, and K. C. Chai (2004). Drainage Consid-erations for Porous Asphalt Surface Course Design, Journal of the Transportation Research Board, Transportation Research Record No. 1868. pp.142–149.
    Watson, D., A. Johnson, and D. Jared. (1998). Georgia De-partment of Transportation’s Progress in Open-Graded Friction Course Development, Transportation Research Record 1616. pp.30-35
    Xie, J., S. Wu, J. Cai, Z. Chen, and W. Wei, (2012). Recycling of basic oxygen furnace slag in asphalt mixture:material characterization & moisture damage investigation, Construction and Building Materials,pp.467–474,http://dx.doi.org/10.1016/j.conbuildmat. 2012.06.023.
    Yoshikuni, O., and T. Takshi (1995). Present Status Asphalt on Espressway in Japan, Proceedings of 8th Road Engineering Association of Asia and Australasia. Vol.1, pp.301-306.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE