研究生: |
簡正安 Chien, Cheng-An |
---|---|
論文名稱: |
應用雙向轉換器建構數位控制式三相變流器之研究 Study on DSP-Based Three-Phase Inverter with Bidirectional Converters |
指導教授: |
李嘉猷
Lee, Jia-You |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 三相變流器 、雙向轉換器 、昇壓轉換器 |
外文關鍵詞: | Three-Phase Inverter, Bidirectional Converter, Boost Converter |
相關次數: | 點閱:116 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文所提出三相變流器是藉由三組雙向轉換器所併合而成,各組雙向轉換器的輸出為交流正弦波疊加直流之脈動電壓,各組輸出相位差120°,各組雙向轉換器利用差動型式輸出,則在負載端即可得到三相交流正弦電壓。本文三相變流器控制策略是採取雙迴圈控制機制,藉以提升變流器的動態響應和穩定性。三相變流器系統之前級昇壓轉換器是採取雙組並聯輸出並在輸出端加入均流控制機制,使各組轉換器可平均分擔後級總輸出功率,藉由此控制機制以提升整體輸出功率,並且可提高三相變流器系統之穩定度與可靠度。最後建構一組輸出額定功率3kW的三相變流器系統,並且針對電阻性、電感性及電容性交流負載進行測試。系統前級雙組昇壓轉換器最高效率為96%,三相變流器最高效率為95%且總諧波失真低於3%,整體三相變流器系統最高效率為92%。
The purpose of the thesis is to study on three-phase inverter system with bidirectional converters. The three-phase inverter consists of three independent and symmetrical bidirectional converters. Each converter is drived by signals with 120 degree phase shift. The output voltage is sinusoidal with the same dc component. The output of inverter is in differential mode and the dc component disappears while only the sinusoidal voltage left on the load. The frond-end of three-phase inverter system is realized by boost converters in parallel with current sharing control strategy. The advantage is to raise output power capability and stability. A prototype 3kW three-phase inverter system is implemented and tested with the resistive load, inductive load and capacitive load. The maximum efficiency of boost converter is 96%. The maximum efficiency of three-phase inverter is 95% and THD is less than 3%. The maximum efficiency of overall system is 92%.
[1] J. Sun, “Impedance-based stability criterion for grid-connected inverters,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3075-3078, Nov. 2011.
[2] S. Y. Park, C. L. Chen, J. S. Lai, and S. R. Moon, “Admittance compensation in current loop control for a grid-tie LCL fuel cell inverter,” IEEE Trans. Power. Electron., vol. 23, no. 4, pp. 1716-1723, July 2008.
[3] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: An overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, Sep. 2004.
[4] O. Lopez, F. D. Freijedo, A.G Yepes, P. F Comesana, J. Malvar, R. Teodorescu, and J. D. Gandoy, “Eliminating ground current in a transformerless photovoltaic application,” IEEE Trans. Energy Convers. vol. 25, no. 1, pp. 140-147, Mar. 2010.
[5] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292-1306, Sep. 2005.
[6] D. De and V. Ramanarayanan, “A dc-to-three-phase-ac high-frequency link converter with compensation for nonlinear distortion,” IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3169-3173, Nov. 2010.
[7] S. Saha and V. P. Sundarsingh “Novel grid-connected photovoltaic inverter,” in Proc. Inst. Elect. Eng., 1996, pp. 219-224.
[8] Y. Li and R. Oruganti, “A low cost flyback ccm inverter for ac module application,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1295-1303, Mar. 2012.
[9] F. Zhang and C. Gong, “A new control strategy of single-stage flyback inverter,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3169-3173, Aug. 2009.
[10] T. Shimizu, K. Wada and N. Nakamura, “Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1264-1272, Sep. 2006.
[11] S. Jain and V. Agarwal, “A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1928-1940, Sep. 2007.
[12] Z. Yao, L. Xiao, and Y. Yan, “Dual-buck full-bridge inverter with hysteresis current control,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3153-3160, Aug. 2009.
[13] N. Kasa, T. Iida, and H. Iwamoto “An inverter using buck-boost type chopper circuits for popular small-scale photovoltaic power system,” in Proc. IEEE IECON, 1999, pp. 185-190.
[14] C. -M. Wang “A novel single-stage full-bridge buck-boost inverter,” IEEE Trans. Power. Electron., vol. 19, no. 1, pp. 150-159, Jan. 2004.
[15] P. Sun, C. Liu, J. S. Lai, C. L. Chen, and N. Kees, “Three-phase dual-buck inverter with unified pulsewidth modulation,” IEEE Trans. Power. Electron., vol. 27, no. 3, pp. 1159-1167, Mar. 2012.
[16] H. Ma and S. Han, “Analysis and design of sliding mode control for ac signal power amplifier,” in Proc. IEEE IECON, 2004, pp. 1652-1657.
[17] Z. Yao, L. Xiao, X. Wei, and H. Wang, “Dual-buck full bridge inverter with spwm control and single current sensor,” in Proc. IEEE ICIEA, 2010, pp. 2154-2158.
[18] M. Jang and V. G. Agelidis, “A minimum power-processing-stage fuel-cell energy system based on boost-inverter with a bidirectional backup battery storage,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1568-1577, May 2011.
[19] W. Zhao, D. D. C. Lu, and V. G. Agelidis, “Current control of grid-connected boost inverter with zero steady-state error,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2825-2834, Oct. 2011.
[20] A. Khan and K. M. Rahman, “Voltage mode control of single phase boost inverter,” in Proc. ICECE, 2008, pp. 665-670.
[21] J. Almazan, N. Vazquez, C. Hernandez, J. Alvarez, and J. Arau, “A comparison between the buck, boost and buck-boost inverters,” in Proc. IEEE CIEP, 2002, pp. 341-346.
[22] M. Jang, M. Ciobotaru, and V. G. Agelidis, “A single-stage fuel cell energy system based on a buck-boost inverter with a backup energy storage unit,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2825-2834, June 2012.
[23] R. O. Caceres, W. M. Garcia, and O. E Camacho, “A buck-boost DC-AC converter: operation, analysis, and control,” in Proc. IEEE CIEP, 1998, pp. 126-131.
[24] D. Chen and G. Wang, “Differential buck dc-dc chopper mode inverters with high-frequency link,” IEEE Trans. Power. Electron., vol. 26, no. 5, pp. 1444-1451, May 2011.
[25] D. Sha, K. Deng, Z. Guo, and X. Liao, “Control strategy for input-series-output-parallel high-frequency AC link inverters,” IEEE Trans. Ind. Electron., vol. 59, no.11, pp. 4101-4111, Nov. 2012.
[26] Z. Jianlin, X. Lidan, and L. Shasha, “Double-loop control and stability analysis based on three-phase buck-boost inverter,” in Proc. IEEE ICEMS, 2008, pp. 1673-1676.
[27] Y. Konishi, Y. F. Huang, and M. J. Hsieh, “Utility interactive high- frequency flyback transformer link three-phase inverter for photovoltaic ac module,” in Proc. IEEE IECON, 2009, pp. 937-942.
[28] 林右鎗,具電流修正控制之市電併聯型變流器,國立成功大學電機工程學系碩士論文,2010年。
[29] 林軒,具弦波調變與空間相量調變之三相變流器系統,國立成功大學電機工程學系碩士論文,2011年。
[30] 張幼旻,應用雙組昇降壓轉換器建構數位控制式變流器系統之研究,國立成功大學電機工程學系碩士論文,2012年。
[31] 李嘉猷、張幼旻、沈紘宇,“應用數位信號處理器於雙組轉換器實現變流器特性之研究,” 中華民國第三十二屆電力工程研討會論文集,2011年,799-803頁。
[32] J. Selvaraj, N. A. Rahim, and C. Krismadinata, “Digital PI current control for grid connected PV inverter,” in Proc. IEEE ICIEA, 2008, pp. 742-746.
[33] M. F. N. Tajuddin, N. A. Rahim, and I. Daut, “Design and implementation of a DSP based digital controller for a dc-dc converter,” in Proc. ICCEE, 2009, pp. 209-213.
[34] S. C. Tan, Y. M. Lai, M. K. H. Cheung, and C. K. Tse, “A fixed-frequency pulsewidth modulation based quasi-sliding-mode controller for buck converters,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1379-1392, Nov. 2005.
[35] A. Abrishamifar, A. A. Ahmad, and S. Elahian, “Fixed frequency sliding mode controller for the buck converter,” in Proc. PEDSTC, 2011, pp. 557-561.
[36] S. C. Tan, Y. M. Lai, M. K. H. Cheung, and C. K. Tse, “On the practical design of a sliding mode voltage controlled buck converter,” IEEE Trans. Power Electron., vol. 20, no. 2, pp. 425-437, Mar. 2005.
[37] Y. Y. Tzou and S. L. Jung, “Full control of a pwm dc-ac converter for ac voltage regulation,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 4, pp. 1218-1226, Oct. 1998.
[38] N. Abdel-Rahim and J. E. Quaicoe, “A single-phase delta-modulated inverter for UPS applications,” IEEE Trans. Ind. Electron., vol. 40, no. 3, pp. 347-354, June 1993.
[39] P. Sanchis, A. Ursua, E. Gubia, and L. Marroyo, “Design and experimental operation of a control strategy for the buck-boost dc-ac inverter,” IEE Proc. Electr. Power Appl., vol. 152, no. 3, pp. 660-668, May 2005.
[40] W. Xiao, B. Zhang, and D. Qiu, “Analysis and Design of an automatic-current-sharing control based on average-current mode for parallel boost converters,” in Proc. IPEMC, 2006.
[41] C. S. Lin and C. L. Chen, “Single-wire current-share paralleling of current-mode-controlled dc power supplies,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 780-786, Aug. 2000.
[42] 洪志泰,以數位信號處理器為控制單元之升壓型高功因電力轉換器之研製,國立成功大學工程科學系碩士論文,2007年。
[43] 林傳昇、李佩謙,數位訊號處理器(DSP)簡介與應用,全華科技圖書股份有限公司,1996年。
[44] 董勝源,DSP TMS320LF2407與C語言控制實習,匯高出版社,2004年。
[45] 林容益,TMS320F240x組合語言及C語言多功能控制應用,全華科技圖書股份有限公司,2005年。