簡易檢索 / 詳目顯示

研究生: 張其正
Chang, Chi-Cheng
論文名稱: 以Nios嵌入式系統設計實現雙感測器車型機器人之全自主式停車控制器
Design and Implementation of Autonomous Parking Control System for Dual-Sensors Car-Like Mobile Robot using Nios Embedded Processor System
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 89
中文關鍵詞: 紅外線超音波停車Nios
外文關鍵詞: parking, ultrasonic, infrared, Nios
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要係探討如何設計與實現具全自主式停車功能之車型機器人。此車型機器人依據紅外線感測器以及超音波感測器所得資料來了解本身與外界環境之關係,利用Nios嵌入式系統來整合計算這些資料,並運用模糊控制法來決定車型機器人之行為。在論文中,首先描述整個車型機器人之硬體架構與設定,再分別對車體上的直流馬達單元、伺服馬達單元、驅動電路、Nios 實驗版、類比轉數位單元、紅外線感測器以及超音波感測器單元作分別的介紹與說明。接著探討如何以模糊邏輯控制法則來達成停車控制,其中包含右邊路徑跟隨、左邊路徑跟隨、右邊路邊停車、右邊車庫停車、左邊路邊停車以及左邊車庫停車等功能。再者提出如何運用Nios SOPC Builder, VHDL, 以及C/C++ 語言將所研發停車控制器實現於Nios 嵌入式系統中。最後以實驗成果展現此全自主式停車控制器之可行性與實用性。

     This thesis presents the design and implementation of the intelligent autonomous parking controller (APC) and accomplishes it in a car-like mobile robot (CLMR). This CLMR estimates the environment by integrating the information of infrared and ultrasonic sensors. We utilize the Nios embedded processor system to compute these data and decide the reactive behavior by fuzzy logic control (FLC).

     Firstly, we describe the system architecture of the CLMR. It contains the reconstruction of the chassis of the CLMR, DC motor unit, servo motor unit, driver circuit, Nios development board, A/D unit, infrared sensor, and ultrasonic sensor. Secondly, we develop the intelligent parking control method, which is based on the fuzzy logic control. We propose four parking modes including right-side parallel-parking mode, right-side garage-parking mode, left-side parallel-parking mode, and left-side garage-parking mode. And the CLMR can autonomously determine which mode to use and park itself into the parking lot. Furthermore, we address how to implement the controller by utilizing the Nios SOPC Builder, VHDL, and C/C++ language in the Nios development board. Finally, it is perceived that our intelligent APC is feasible and effective from the practical experiments.

    摘 要 I Abstract II Acknowledgment III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES IX Chapter 1 Introduction - 1 - 1.1 Preliminary - 1 - 1.2 Organization of this thesis - 2 - Chapter 2 Hardware Architecture of A Car-Like Mobile Robot - 4 - 2.1 Introduction - 4 - 2.2 Overall block diagram of the CLMR - 5 - 2.2.1 CLMR mechanism - 7 - 2.2.2 DC Motor Unit - 8 - 1) DC motor mechanism - 8 - 2) DC motor Driver - 8 - 2.2.3 Servo Motor Unit - 10 - 2.2.4 Sensor Module - 11 - 1) Infrared sensor - 12 - 2) Ultrasonic sensor - 13 - 2.2.5 Nios Embedded System Development Board - 15 - 2.2.6 A/D Unit - 18 - 2.2.7 Power Regulator Unit - 20 - 2.3 Summary - 21 - Chapter 3 System Analysis and Fuzzy Logic Control Design - 23 - 3.1 Introduction - 23 - 3.2 Kinematic Model of CLMR - 24 - 3.3 Fuzzy Logic Controller - 25 - 3.3.1 FI - 26 - 3.3.2 DML - 26 - 3.3.3 KB - 27 - 3.3.4 DFI - 27 - 3.4 Fuzzy Wall-Following Controller Design (FWFC) - 28 - 3.4.1 Design of Right-side FWFC - 31 - 3.4.2 Design of left-side FWFC - 35 - 3.4.3 Fuzzy Velocity Controller Design - 37 - 3.5 Parking Lot Scanning - 39 - 3.6 Parking controller design - 41 - 3.6.1 Right-side fuzzy parallel-parking controller (RFPPC). - 41 - 3.6.2 Right-side fuzzy garage-parking controller (RFGPC). - 44 - 3.6.3 Left-side fuzzy parallel-parking controller (LFPPC). - 47 - 3.6.4 Left-side fuzzy garage-parking controller (LFGPC). - 50 - 3.7 Summary - 53 - Chapter 4 Implementation and Experimental results - 54 - 4.1 Introduction - 54 - 4.2 Nios Embedded Process System - 55 - 4.3 Hardware Architecture of the APC on a Chip - 57 - 4.3.1 PLL_block - 58 - 4.3.2 ADC_control - 59 - 4.3.3 Ultrasonic_control - 60 - 4.3.4 Nios II system - 61 - 4.3.5 Moto_PWM - 61 - 4.4 Software - 63 - 4.5 Experimental Results - 64 - 4.6 Summary - 69 - Chapter 5 Conclusion and Future Works - 70 - 5.1 Conclusion - 70 - 5.2 Future Works - 71 - References - 72 -

    [1] L. A. Zadeh,“Fussy Sets,” Informat. Contr., Vol. 8, pp. 338-353, 1965.
    [2] L. A. Zadeh, “Fuzzy Algorithms,” Inform. Control, Vol. 12, pp. 94-102, 1968.
    [3] M. Sugeno and K. Murakami, “An experimental study on fuzzy parking control using a model car,” in Industrial Applications of Fuzzy Control, M. Sugeno, Ed. North-Holland, The Netherlands, 1985, pp. 105–124.
    [4] M. Sugeno, T. Murofushi, T. Mori, T. Tatematsu, and J. Tanaka, “Fuzzy algorithmic control of a model car by oral instructions,” Fuzzy Sets Syst., vol. 32, pp. 207–219, 1989.
    [5] A. Ohata and M. Mio, “Parking control based on nonlinear trajectory control for low speed vehicles,” in Proc. IEEE Int. Conf. Industrial Electronics, 1991, pp. 107–112.
    [6] S. Yasunobu and Y. Murai, “Parking control based on predictive fuzzy control,” in Proc. IEEE Int. Conf. Fuzzy Systems, vol. 2, 1994, pp. 1338–1341.
    [7] W. A. Daxwanger and G. K. Schmidt, “Skill-based visual parking control using neural and fuzzy networks,” in Proc. IEEE Int. Conf. System, Man, Cybernetics, vol. 2, 1995, pp. 1659–1664.
    [8] A. Tayebi and A. Rachid, “A time-varying-based robust control for the parking problem of a wheeled mobile robot,” in Proc. IEEE Int. Conf. Robotics and Automation, 1996, pp. 3099–3104.
    [9] M. C. Leu and T. Q. Kim, “Cell mapping based fuzzy control of car parking,” in Proc. IEEE Int. Conf. Robotics Automation, 1998, pp.2494–2499.
    [10] H. An, T. Yoshino, D. Kashimoto, M. Okubo, Y. Sakai, and T. Hamamoto, “Improvement of convergence to goal for wheeled mobile robot using parking motion,” in Proc. IEEE Int. Conf. Intelligent Robots Systems, 1999, pp. 1693–1698.
    [11] B. Shirazi and S. Yih, “Learning to control: a heterogeneous approach,” in Proc. IEEE Intl. Symp. Intelligent Control, 1989, pp. 320–325.
    [12] M. Ohkita, H. Mitita, M. Miura, and H. Kuono, “Traveling experiment of an autonomous mobile robot for a flush parking,” in Proc. 2nd IEEE Conf. Fuzzy System, vol. 2, Francisco, CA, 1993, pp. 327–332.
    [13] D. Lyon, “Parallel parking with curvature and nonholonomic constraints,” in Proc. Symp. Intelligent Vehicles, Detroit, MI, 1992, pp. 341–346.
    [14] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: steering using sinusoids,” IEEE Trans. Automat. Contr., vol. 38, pp. 700–716, May 1993.
    [15] J. P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, “A motion planner for nonholonomic mobile robots,” IEEE Trans. Robot. Automat., vol. 10, pp. 577–593, Oct. 1994.
    [16] I. E. Paromtchik and C. Laugire, “Motion generation and control for parking an autonomous vehicle,” in Proc. IEEE Conf. Robotics Automation, vol. 4, Minneapolis, MN, 1996, pp. 3117–3122.
    [17] C. Laugier, T. Fraichard, I. E. Paromtchik, and P. Garnier, “Sensor-based control architecture for a car-like vehicle,” in Proc. IEEE Int. Conf. Intelligent Robots Systems, 1998, pp. 216–222.
    [18] D. Leitch and P. J. Probert, “New techniques for genetic development of a class of fuzzy controllers,” IEEE Trans. Syst., Man, Cybern. C, vol. 28, pp. 112–123, Feb. 1998.
    [19] L. Dorst, “Analyzing the behaviors of a car: a study in abstraction of goal-directed motions,” IEEE Trans. Syst., Man, Cybern. A, vol. 28, pp. 811–822, Nov. 1998.
    [20] K.Y. Lian, C. S. Chin, and T. S. Chiang, “Parallel parking a car-like robot using fuzzy gain scheduling,” in Proc. 1999 IEEE Int. Conf. Control Applications, vol. 2, 1999, pp. 1686–1691.
    [21] K. Jiang and L. D. Seneviratne, “A sensor guided autonomous parking system for nonholonomic mobile robots,” in Proc. IEEE Int. Conf. Robotics Automation, vol. 1, 1999, pp. 311–316.
    [22] K. Jiang, “A sensor guided parallel parking system for nonholonomic vehicles,” in Proc. IEEE Conf. Intelligent Transportation Systems, 2000, pp. 270–275.
    [23] J. Xiu, G. Chen, and M. Xie, “Vision-guided automatic parking for smart car,” in Proc. IEEE Intelligent Vehicles Symp., 2000, pp. 725–730.
    [24] D. Gorinevsky, A. Kapitanovsky, and A. Goldenberg, “Neural network architecture for trajectory generation and control of automated car parking,” IEEE Trans. Contr. Syst. Technol., vol. 4, pp. 50–56, Jan. 1996.
    [25] S. Lee, M. Kim, Y. Youm, and W. Chung, “Control of a car-like mobile robot for parking problem,” in Proc. IEEE Int. Conf. Robotics Automation, 1999, pp. 1–6.
    [26] T.-H. S. Li and S.-J. Chang, “Autonomous Fuzzy Parking Control of a Car-Like Mobile Robot,” IEEE Transactions on Systems, man, and cybernetics, vol. 33, pp. 451–465, 2003.
    [27] T.-H. S. Li, S.-J. Chang, and Y.X. Chen, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot”, IEEE Trans on Industrial Electronics, vol. 50, NO.5, pp. 867-880, 2003.
    [28] Iluminada Baturone, Francisco J. Moreno-Velo, Santiago Sánchez-Solano, and Aníbal Ollero, “Automatic Design of Fuzzy Controllers for Car-Like Autonomous Robots” IEEE transactions on Fuzzy Systems, vol. 12, NO. 4, pp 447-465, 2004.
    [29] Youngjoon Han, Moonyong Han, Hyungtae Cha, Mincheol Hong, Hernsoo Hahn, “Tracking of a moving object using ultrasonic sensors based on a virtual ultrasonic image” Robotics and Autonomous Systems vol.36 pp. 11–19, 2001.
    [30] C. S. Ting, T. H. S. Li, and F. C. Kung, “An approach to systematic design of the fuzzy control system,” Fuzzy Sets Syst., vol. 77, pp. 151–166, 1996.
    [31] T. H. S. Li and M. Y. Shieh, “Switching-type fuzzy sliding mode control of a cart-pole system,” Mechatronics, vol. 10, pp. 91–109, 2000.
    [32] O. Kaynak, K. Erbatur, and M. Ertugrul, “The fusion of computationally intelligent methodologies and sliding-mode control—a survey,” IEEE Trans. Ind. Electron., vol. 48, pp. 4–17, Feb. 2001.
    [33] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo control,” IEEE Trans. Robot. Automat., vol. 12, pp. 651–669, Oct. 1996.
    [34] J. S. Cho, H. W. Kim, and I. S. Kweon, “Image-based visual servoing using position and angle of image features,” Electron. Lett., vol. 37, pp. 208–214, 2001.
    [35] http://www.acroname.com/robotics/parts/R11-6500.html
    [36] http://www.altera.com
    [37] User’s Manual, L293D Quadruple Half-H Derivers, June, 2002.
    [38] 陳意翔,具智慧型停車功能車型機器人之設計與研製,國立成功大學電機系碩士論文,2002。
    [39] 蘇裕記,以FPGA晶片實現智慧型車庫停車控制系統,國立成功大學電機系碩士論文,2000。
    [40] 李宗勳,應用FPGA晶片實現車型機器人之智慧型路邊停車控制之研究,國立成功大學電機系碩士論文,2000。
    [41] 張世傑,智慧型車庫停車之設計、研製與實現,國立成功大學電機系碩士論文,1997。

    下載圖示 校內:2006-07-04公開
    校外:2006-07-04公開
    QR CODE