簡易檢索 / 詳目顯示

研究生: 徐泓鉦
Xu, Hong-Zheng
論文名稱: 以無標記增顯拉曼快速檢測平台檢測SARS-CoV-2病毒及A型流感病毒
A Rapid and Label-free SERS Platform for Detection of SARS-CoV-2 and Influenza A Virus
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: 表面增顯拉曼散射倒三角錐奈米腔體新型冠狀病毒A型流感病毒快速掃描檢測
外文關鍵詞: Surface-Enhanced Raman Scattering, Inverted triangular Au nano-cavities, SARS-CoV-2, Influenza A, Fast-screening detection
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米壓痕技術(Nanoindentation)是一種有效的方法應用於表面增顯拉曼散射(Surface-Enhanced Raman Scattering, SERS),此技術可以製作出較深的角錐之圖形表面,基板製備參數容易調整,本論文使用一種簡單的物理性的奈米壓痕技術,在金薄膜表面製作出奈米壓痕金孔洞陣列基板(triangular Au nano-cavities arrayed, nAu)。在先前研究中,以單分子層 2-巰基-5-硝基苯甲酸(2-nitro-5-thiobenzoic acid, NTB)實驗發現以633 nm波長之拉曼雷射最具有拉曼增顯效果,並且在檢測病毒上面確認到不同尺寸病毒對應最適合的壓痕深度才能夠產生最佳增顯效果。
    本論文將接續先前研究,以造成全球大流行之呼吸道感染新型冠狀病毒(Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)與兩種A型流行性感冒病毒(H1N1、H3N2)作為檢測標的,製作適合病毒大小的nAu基板來檢測病毒。探討壓痕深度為90 nm、120 nm及140 nm這三種基板之效能,經過R6G作為分子探針評估增顯因子(enhancement factor, EF)均可達106。
    以三種nAu基板檢測SARS-CoV-2-S pseudovirus及VSV-G pseudovirus分析其SARS-CoV-2 S蛋白之光譜作為檢測SARS-CoV-2病毒參考。並檢測SARS-CoV-2及A型流感病毒及三種SARS-CoV-2 (B.1.1.7、B.1.1、A.3),分析結果顯示,以nAu基板檢測病毒SERS圖譜訊號範圍在800 ~1800 cm-1 之間,大部分為胺基酸的特徵鋒。我們以nAu基板偵測其SERS圖譜可以區分3種不同SARS-CoV-2病毒,其中B.1.1.7濃度至105 copies/mL也可以被檢測出。並且以SARS-CoV-2-S pseudovirus及兩種A型流感病毒進行雙病毒混和分析,SERS光譜上的特徵鋒亦在特定的區域。因此,以nAu SERS-active基板作為無標記檢測平台能夠快速確認SARS-CoV-2與流感病毒株,有潛力作為體外病毒檢測之工具。

    The current pandemic urges the extremely sensitive and prompt detection of SARS-CoV-2 virus and influenza A virus. In this study, we present a inverted triangular Au nano-cavities arrayed (nAu) nanostructure as an extremely sensitive Surface-Enhanced Raman Scattering biosensor. Through the induction of the electromagnetic effect with various indentation depths (Dv) by the substrate, the virus can be distinguished from the amino acids on its surface. The nAu substrate was evaluated using rhodamine 6G (R6G) as a probe molecule at low concentration, and the enhancement factor (EF) reaching 5.5×107. SERS spectra of S protein of SARS-CoV-2 were obtained by SERS spectra of SARS-CoV-2 pseudovirus and VSV-G pseudovirus. Multiple detection of SARS-CoV-2 pseudovirus and influenza A virus were also demonstrated with characteristic peaks of individual viruses. In addition, analysis of the Raman spectra of SARS-CoV-2 viruses (A.3, B.1.1 and B.1.1.7) of three lineages, in addition to the characteristic peaks of the S protein exhibited by the SARS-CoV-2 pseudovirus, also obtained Other characteristic peaks and subtle changes in spectra of different ancestry are observed. The detectable concentration for SARS-CoV-2 is 105 copies/ml. The nAu substrate has thus demonstrated a high potential in the fast-screening detection of viruses.

    摘要 I 英文摘要 II 誌謝 VII 目錄 IX 表目錄 XII 圖目錄 XIII 符號 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧與理論基礎 4 2.1 振動光譜 4 2.1.1 拉曼振動光譜理論 4 2.1.2 拉曼光譜之極化誘發理論 6 2.2 表面增顯拉曼散射效應 (SERS) 7 2.2.1 表面增顯拉曼散射光譜於奈米結構表面機制 8 2.2.2 電磁效應(electromagnetic effect) 9 2.2.3 化學效應(chemical effect) 10 2.2.4 侷限表面電漿(localized surface plasmon, LSP) 11 2.2.5 週期性奈米結構基板對於表面增顯拉曼散射的效果 12 2.3 病毒 12 2.3.1 流感病毒之簡介 13 2.3.2 SARS-CoV-2病毒之簡介 14 2.3.3 SARS-CoV-2 pseudovirus之簡介 16 2.4 奈米壓痕金陣列結構基板應用於無標記SERS檢測 17 2.5 研究目的 19 第三章 材料與方法 21 3.1 實驗架構與流程 21 3.2 實驗材料與方法 22 3.2.1 鍍金基板製備 22 3.2.2 增顯拉曼散射活性基板製作 23 3.2.3 分子探針溶液製備 24 3.2.4 病毒選用 24 3.3 溶液模式之拉曼光譜檢測 26 3.3.1 訊號處理 28 3.3.2 增顯因子之評估計算 29 3.3.3 檢測病毒的流程 30 3.4 製程儀器 30 3.4.1 電子束蒸鍍機 30 3.4.2 奈米壓痕試驗機 31 3.5 分析儀器 33 3.5.1 場發射掃描式電子顯微鏡 ( SEM ) 33 3.5.2 原子力顯微鏡 33 3.5.3 拉曼光譜儀 (Raman spectrometer) 34 第四章 SERS活性基板之性質表現 36 4.1 試片之幾何性質分析 36 4.2 表面增顯拉曼散射光譜之分析 38 4.2.1 以不同濃度之R6G溶液進行SERS強度分析 38 4.2.2 SERS增顯係數的評估 40 第五章 無標記SERS快速檢測平台應用於檢測病毒 41 5.1 SARS-CoV-2-S pseudovirus檢測 42 5.1.1 SARS-CoV-2-S pseudovirus檢測與壓痕深度的選擇 42 5.1.2 以SARS-CoV-2-S pseudovirus分析SARS-CoV-2 S蛋白特徵峰 43 5.1.3 免標定SERS病毒檢測平台的穩定性之評估 45 5.2 A型流感病毒之檢測 46 5.3 SARS-CoV-2-S pseudovirus與A型流感病毒之雙病毒檢測 48 5.4 SARS-CoV-2病毒之檢測 50 5.5 無標記SERS快速檢測平台區分不同病毒之探討 54 結論 58 未來展望 60 參考文獻 61 附錄1 74

    [1] A. E. Gorbalenya, S. C. Baker, R. S. Baric, R. J. De Groot, C. Drosten, A. A. Gulyaeva, B. L. Haagmans, C. Lauber, A. M. Leontovich, and B. W. Neuman, “The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2,” Nature microbiology, vol. 5, no. 4, pp. 536, 2020.
    [2] C. B. Vogels, A. F. Brito, A. L. Wyllie, J. R. Fauver, I. M. Ott, C. C. Kalinich, M. E. Petrone, A. Casanovas-Massana, M. C. Muenker, and A. J. Moore, “Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets,” Nature Microbiology, vol. 5, no. 10, pp. 1299-1305, 2020.
    [3] V. M. Corman, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D. K. Chu, T. Bleicker, S. Brünink, J. Schneider, and M. L. Schmidt, “Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR,” Eurosurveillance, vol. 25, no. 3, pp. 2000045, 2020.
    [4] C. C. Lai, C. Y. Wang, W. C. Ko, and P. R. Hsueh, “Review Article In vitro diagnostics of coronavirus disease 2019: Technologies and application,” Journal of Microbiology Immunology and Infection, vol. 54, no. 2, pp. 164-174, Apr, 2021.
    [5] T. Phan, “Genetic diversity and evolution of SARS-CoV-2,” Infection, Genetics and Evolution, vol. 81, pp. 104260, 2020.
    [6] M. R. Islam, M. N. Hoque, M. S. Rahman, A. R. U. Alam, M. Akther, J. A. Puspo, S. Akter, M. Sultana, K. A. Crandall, and M. A. Hossain, “Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity,” Scientific Reports, vol. 10, no. 1, pp. 1-9, 2020.
    [7] A. J. Jamal, M. Mozafarihashjin, E. Coomes, J. Powis, A. X. Li, A. Paterson, S. Anceva-Sami, S. Barati, G. Crowl, A. Faheem, L. Farooqi, S. Khan, K. Prost, S. Poutanen, M. Taylor, L. Yip, X. Z. Zhong, A. J. McGeer, and S. Mubareka, “Sensitivity of Nasopharyngeal Swabs and Saliva for the Detection of Severe Acute Respiratory Syndrome Coronavirus 2,” Clinical Infectious Diseases, vol. 72, no. 6, pp. 1064-1066, Mar, 2021.
    [8] J. L. Santarpia, D. N. Rivera, V. Herrera, M. J. Morwitzer, H. Creager, G. W. Santarpia, K. K. Crown, D. Brett-Major, E. Schnaubelt, and M. J. Broadhurst, “Transmission potential of SARS-CoV-2 in viral shedding observed at the University of Nebraska Medical Center,” MedRxiv, vol. 10, no. 1, pp.1-8, 2020.
    [9] N. Younes, D. W. Al-Sadeq, H. Al-Jighefee, S. Younes, O. Al-Jamal, H. I. Daas, H. Yassine, and G. K. Nasrallah, “Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2,” Viruses, vol. 12, no. 6, pp. 582, 2020.
    [10] H. Nair, W. A. Brooks, M. Katz, A. Roca, J. A. Berkley, S. A. Madhi, J. M. Simmerman, A. Gordon, M. Sato, and S. Howie, “Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis,” The Lancet, vol. 378, no. 9807, pp. 1917-1930, 2011.
    [11] S. A. Sellers, R. S. Hagan, F. G. Hayden, and W. A. Fischer, “The hidden burden of influenza: a review of the extra‐pulmonary complications of influenza infection,” Influenza and other respiratory viruses, vol. 11, no. 5, pp. 372-393, 2017.
    [12] R. J. Lu, X. Zhao, J. Li, P. H. Niu, B. Yang, H. L. Wu, W. L. Wang, H. Song, B. Y. Huang, N. Zhu, Y. H. Bi, X. J. Ma, F. X. Zhan, L. Wang, T. Hu, H. Zhou, Z. H. Hu, W. M. Zhou, L. Zhao, J. Chen, Y. Meng, J. Wang, Y. Lin, J. Y. Yuan, Z. H. Xie, J. M. Ma, W. J. Liu, D. Y. Wang, W. B. Xu, E. C. Holmes, G. F. Gao, G. Z. Wu, W. J. Chen, W. F. Shi, and W. J. Tan, “Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding,” Lancet, vol. 395, no. 10224, pp. 565-574, Feb, 2020.
    [13] D. B. Axell-House, R. Lavingia, M. Rafferty, E. Clark, E. S. Amirian, and E. Y. Chiao, “The estimation of diagnostic accuracy of tests for COVID-19: A scoping review,” Journal of Infection, vol. 81, no. 5, pp. 681-697, Nov, 2020.
    [14] N. Zhu, D. Y. Zhang, W. L. Wang, X. W. Li, B. Yang, J. D. Song, X. Zhao, B. Y. Huang, W. F. Shi, R. J. Lu, P. H. Niu, F. X. Zhan, X. J. Ma, D. Y. Wang, W. B. Xu, G. Z. Wu, G. G. F. Gao, W. J. Tan, and C. China Novel, “A Novel Coronavirus from Patients with Pneumonia in China, 2019,” New England Journal of Medicine, vol. 382, no. 8, pp. 727-733, Feb, 2020.
    [15] K. K. W. To, O. T. Y. Tsang, W. S. Leung, A. R. Tam, T. C. Wu, D. C. Lung, C. C. Y. Yip, J. P. Cai, J. M. C. Chan, T. S. H. Chik, D. P. L. Lau, C. Y. C. Choi, L. L. Chen, W. M. Chan, K. H. Chan, J. D. Ip, A. C. K. Ng, R. W. S. Poon, C. T. Luo, V. C. C. Cheng, J. F. W. Chan, I. F. N. Hung, Z. W. Chen, H. L. Chen, and K. Y. Yuen, “Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study,” Lancet Infectious Diseases, vol. 20, no. 5, pp. 565-574, May, 2020.
    [16] J. Dinnes, J. J. Deeks, A. Adriano, S. Berhane, C. Davenport, S. Dittrich, D. Emperador, Y. Takwoingi, J. Cunningham, S. Beese, J. Dretzke, L. F. di Ruffano, I. M. Harris, M. J. Price, S. Taylor-Phillips, L. Hooft, M. M. G. Leeflang, R. Spijker, A. Van den Bruel, and C.-D. T. A. Cochrane, “Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection (Review),” Cochrane Database of Systematic Reviews, no. 8, pp. 133, 2020.
    [17] J. P. Broughton, X. Deng, G. Yu, C. L. Fasching, V. Servellita, J. Singh, X. Miao, J. A. Streithorst, A. Granados, and A. Sotomayor-Gonzalez, “CRISPR–Cas12-based detection of SARS-CoV-2,” Nature Biotechnology, vol. 38, no. 7, pp. 870-874, 2020.
    [18] S. Kremer, F. Lersy, J. de Seze, J. C. Ferre, A. Maamar, B. Carsin-Nicol, O. Collange, F. Bonneville, G. Adam, G. Martin-Blondel, M. Rafiq, T. Geeraerts, L. Delamarre, S. Grand, A. Krainik, and S.-C. Grp, “Brain MRI Findings in Severe COVID 19: A Retrospective Observational Study,” Radiology, vol. 297, no. 2, pp. E242-E251, Nov, 2020.
    [19] A. J. Rodriguez-Morales, J. A. Cardona-Ospina, E. Gutierrez-Ocampo, R. Villamizar-Pena, Y. Holguin-Rivera, J. P. Escalera-Antezana, L. E. Alvarado-Arnez, D. K. Bonilla-Aldana, C. Franco-Paredes, A. F. Henao-Martinez, A. Paniz-Mondolfi, G. J. Lagos-Grisales, E. Ramirez-Vallejo, J. A. Suarez, L. I. Zambrano, W. E. Villamil-Gomez, G. J. Balbin-Ramon, A. A. Rabaan, H. Harapan, K. Dhama, H. Nishiura, H. Kataoka, T. Ahmad, R. Sah, and D. Latin Amer Network Coronavirus, “Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis,” Travel Medicine and Infectious Disease, vol. 34, pp. 13, Mar-Apr, 2020.
    [20] H. K. Lee, Y. H. Lee, C. S. L. Koh, G. C. Phan-Quang, X. Han, C. L. Lay, H. Y. F. Sim, Y.-C. Kao, Q. An, and X. Y. Ling, “Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials,” Chemical Society Reviews, vol. 48, no. 3, pp. 731-756, 2019.
    [21] X. M. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. M. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nature Biotechnology, vol. 26, no. 1, pp. 83-90, Jan, 2008.
    [22] K. Sivashanmugan, J.-D. Liao, B. H. Liu, C.-K. Yao, and S.-C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensors and Actuators B: Chemical, vol. 207, pp. 430-436, 2015.
    [23] X. M. Qian, and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chemical Society Reviews, vol. 37, no. 5, pp. 912-920, 2008.
    [24] M. T. Osterholm, “Preparing for the next pandemic,” New England Journal of Medicine, vol. 352, no. 18, pp. 1839-1842, 2005.
    [25] McIntosh, Kenneth, Martin S. Hirsch, and Allyson Bloom, “Coronavirus disease 2019 (COVID-19),” UpToDate Hirsch MS Bloom, vol. 5, no. 1, 2020.
    [26] H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, and P. L. Martin-Hirsch, “Using Raman spectroscopy to characterize biological materials,” Nature protocols, vol. 11, no. 4, pp. 664-687, 2016.
    [27] D. Zhang, X. Zhang, R. Ma, S. Deng, X. Wang, X. Zhang, X. Huang, Y. Liu, G. Li, and J. Qu, “Ultra-fast and onsite interrogation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in environmental specimens via surface enhanced Raman scattering (SERS),” Water Research, vol. 200, pp. 117243, 2021
    [28] J. R. Ferraro, Introductory Raman Spectroscopy, pp. 161-168: Elsevier, 2003.
    [29] R. L. McCreery, Raman Spectroscopy for Chemical Analysis: John Wiley & Sons, 2005.
    [30] D. L. Jeanmaire, and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 84, no. 1, pp. 1-20, 1977.
    [31] M. G. Albrecht, and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” Journal of the american chemical society, vol. 99, no. 15, pp. 5215-5217, 1977.
    [32] M. Moskovits, “Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals,” The Journal of Chemical Physics, vol. 69, no. 9, pp. 4159-4161, 1978.
    [33] M. Moskovits, “Surface-enhanced spectroscopy,” Reviews of Modern Physics, vol. 57, no. 3, pp. 783, 1985.
    [34] S. Hong, and X. Li, “Optimal size of gold nanoparticles for surface-enhanced Raman spectroscopy under different conditions,” Journal of Nanomaterials, vol. 2013, 2013.
    [35] P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. R. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Annual Review of Analytical Chemistry, vol. 1, pp. 601-626, 2008.
    [36] Y.-C. Liu, and R. McCreery, “Raman spectroscopic determination of the structure and orientation of organic monolayers chemisorbed on carbon electrode surfaces,” Analytical Chemistry, vol. 69, no. 11, pp. 2091-2097, 1997.
    [37] Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures,” Journal of Physical Chemistry B, vol. 106, no. 37, pp. 9463-9483, Sep, 2002.
    [38] J. R. Lombardi, and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” Journal of Physical Chemistry C, vol. 112, no. 14, pp. 5605-5617, Apr, 2008.
    [39] A. Otto, “The 'chemical' (electronic) contribution to surface-enhanced Raman scattering,” Journal of Raman Spectroscopy, vol. 36, no. 6-7, pp. 497-509, Jun-Jul, 2005.
    [40] 吳民耀, 劉威志, “表面電漿子理論與模擬,” 物理雙月刊, 二十八卷二期, 2006.
    [41] A. Otto, “Surface-enhanced Raman scattering:“Classical” and “Chemical” origins,” Light Scattering in Solids IV, pp. 289-418, 1984.
    [42] S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Reviews Materials, vol. 1, no. 6, pp. 16, Jun, 2016.
    [43] M. Xia, P. Zhang, K. Qiao, Y. Bai, and Y.-H. Xie, “Coupling SPP with LSPR for enhanced field confinement: a simulation study,” The Journal of Physical Chemistry C, vol. 120, no. 1, pp. 527-533, 2016.
    [44] D. L. Suarez, “Influenza A virus,” Animal Influenza, pp. 1-30, 2016.
    [45] J. J. Otterstrom, B. Brandenburg, M. H. Koldijk, J. Juraszek, C. Tang, S. Mashaghi, T. Kwaks, J. Goudsmit, R. Vogels, R. H. E. Friesen, and A. M. van Oijen, “Relating influenza virus membrane fusion kinetics to stoichiometry of neutralizing antibodies at the single-particle level,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 48, pp. E5143-E5148, Dec, 2014.
    [46] J. J. Otterstrom, B. Brandenburg, M. H. Koldijk, J. Juraszek, C. Tang, S. Mashaghi, T. Kwaks, J. Goudsmit, R. Vogels, and R. H. Friesen, “Relating influenza virus membrane fusion kinetics to stoichiometry of neutralizing antibodies at the single-particle level,” Proceedings of the National Academy of Sciences, vol. 111, no. 48, pp. E5143-E5148, 2014.
    [47] S. Klein, M. Cortese, S. L. Winter, M. Wachsmuth-Melm, C. J. Neufeldt, B. Cerikan, M. L. Stanifer, S. Boulant, R. Bartenschlager, and P. Chlanda, “SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography,” Nature Communications, vol. 11, no. 1, pp. 10, Nov, 2020.
    [48] A. Rambaut, E. C. Holmes, Á. O’Toole, V. Hill, J. T. McCrone, C. Ruis, L. du Plessis, and O. G. Pybus, “A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology,” Nature microbiology, vol. 5, no. 11, pp. 1403-1407, 2020.
    [49] GISAID, "lineage nomenclature aids in genomic epidemiology studies of active hCoV-19 viruses," 2020, from https://www.gisaid.org/references/statements-clarifications/clade-and-lineage-nomenclature-aids-in-genomic-epidemiology-of-active-hcov-19-viruses/
    [50] X. Tang, C. Wu, X. Li, Y. Song, X. Yao, X. Wu, Y. Duan, H. Zhang, Y. Wang, and Z. Qian, “On the origin and continuing evolution of SARS-CoV-2,” National Science Review, vol. 7, no. 6, pp. 1012-1023, 2020.
    [51] World Health Organization, “Tracking SARS-CoV-2 variants,” Retrieved July 18, 2021,from https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
    [52] H. Tani, S. Morikawa, and Y. Matsuura, “Development and applications of VSV vectors based on cell tropism,” Frontiers in microbiology, vol. 2, pp. 272, 2012.
    [53] M. Sena-Esteves, J. C. Tebbets, S. Steffens, T. Crombleholme, and A. W. Flake, “Optimized large-scale production of high titer lentivirus vector pseudotypes,” Journal of Virological Methods, vol. 122, no. 2, pp. 131-139, 2004.
    [54] T. Kafri, H. van Praag, L. Ouyang, F. H. Gage, and I. M. Verma, “A packaging cell line for lentivirus vectors,” Journal of Virology, vol. 73, no. 1, pp. 576-584, Jan, 1999.
    [55] C.-W. Chang, J.-D. Liao, A.-L. Shiau, and C.-K. Yao, “Non-labeled virus detection using inverted triangular Au nano-cavities arrayed as SERS-active substrate,” Sensors and Actuators B: Chemical, vol. 156, no. 1, pp. 471-478, 2011.
    [56] W. Kern, “The evolution of silicon wafer cleaning technology,” Journal of the Electrochemical Society, vol. 137, no. 6, pp. 1887, 1990.
    [57] E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” The Journal of Physical Chemistry C, vol. 111, no. 37, pp. 13794-13803, 2007.
    [58] Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chemical Communications, vol. 47, no. 13, pp. 3784-3786, 2011.
    [59] S. K. Gupta, J. Singh, K. Anbalagan, P. Kothari, R. R. Bhatia, P. K. Mishra, V. Manjuladevi, R. K. Gupta, and J. Akhtar, “Synthesis, phase to phase deposition and characterization of rutile nanocrystalline titanium dioxide (TiO2) thin films,” Applied Surface Science, vol. 264, pp. 737-742, 2013.
    [60] T. Tsui, and A. A. Volinsky, Small Scale Deformation using Advanced Nanoindentation Techniques: MDPI-Multidisciplinary Digital Publishing Institute, 2019.
    [61] R. J. Clark, “Raman microscopy in the identification of pigments on manuscripts and other artwork,” The Scientific Examination of Art. National Academies of Science, Washington DC, pp. 162-185, 2005.
    [62] P. Van Espen, H. Nullens, and F. Adams, “Possible errors in energy dispersive x-ray spectrometry due to Raman scattering,” Analytical Chemistry, vol. 51, no. 9, pp. 1580-1583, 1979.
    [63] C.-W. Chang, J.-D. Liao, H.-C. Chang, L.-K. Lin, Y.-Y. Lin, and C.-C. Weng, “Fabrication of nano-indented cavities on Au for the detection of chemically-adsorbed DTNB molecular probes through SERS effect,” Journal of Colloid and Interface Science, vol. 358, no. 2, pp. 384-391, 2011.
    [64] F. Saviñon-Flores, E. Méndez, M. López-Castaños, A. Carabarin-Lima, K. A. López-Castaños, M. A. González-Fuentes, and A. Méndez-Albores, “A Review on SERS-Based Detection of Human Virus Infections: Influenza and Coronavirus,” Biosensors, vol. 11, no. 3, pp. 66, 2021.
    [65] A. Kamińska, E. Witkowska, K. Winkler, I. Dzięcielewski, J. L. Weyher, and J. Waluk, “Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system,” Biosensors and Bioelectronics, vol. 66, pp. 461-467, 2015.
    [66] K. Sivashanmugan, J.-D. Liao, J.-W. You, and C.-L. Wu, “Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection,” Sensors and Actuators B: Chemical, vol. 181, pp. 361-367, 2013.
    [67] Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Applied Spectroscopy Reviews, vol. 42, no. 5, pp. 493-541, 2007.
    [68] V. S. Mandala, M. J. McKay, A. A. Shcherbakov, A. J. Dregni, A. Kolocouris, and M. Hong, “Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers,” Nature Structural & Molecular Biology, vol. 27, no. 12, pp. 1202-1208, 2020.
    [69] K. Saksela, G. Cheng, and D. Baltimore, “Proline‐rich (PxxP) motifs in HIV‐1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down‐regulation of CD4,” The EMBO Journal, vol. 14, no. 3, pp. 484-491, 1995.
    [70] D. Mutimer, A. Aghemo, H. Diepolder, F. Negro, G. Robaeys, S. Ryder, and F. Zoulim, “EASL Clinical Practice Guidelines: management of hepatitis C virus infection,” Journal of Hepatology, vol. 60, no. 2, pp. 392-420, 2014.
    [71] K. Uetsuki, P. Verma, T.-a. Yano, Y. Saito, T. Ichimura, and S. Kawata, “Experimental identification of chemical effects in surface enhanced Raman scattering of 4-aminothiophenol,” The Journal of Physical Chemistry C, vol. 114, no. 16, pp. 7515-7520, 2010.
    [72] N. N. Durmanov, R. R. Guliev, A. V. Eremenko, I. A. Boginskaya, I. A. Ryzhikov, E. A. Trifonova, E. V. Putlyaev, A. N. Mukhin, S. L. Kalnov, and M. V. Balandina, “Non-labeled selective virus detection with novel SERS-active porous silver nanofilms fabricated by Electron Beam Physical Vapor Deposition,” Sensors and Actuators B: Chemical, vol. 257, pp. 37-47, 2018.
    [73] Q. Ye, A. M. West, S. Silletti, and K. D. Corbett, “Architecture and self‐assembly of the SARS‐CoV‐2 nucleocapsid protein,” Protein Science, vol. 29, no. 9, pp. 1890-1901, 2020.
    [74] J. Torres, K. Parthasarathy, X. Lin, R. Saravanan, A. Kukol, and D. X. Liu, “Model of a putative pore: the pentameric α-helical bundle of SARS coronavirus E protein in lipid bilayers,” Biophysical Journal, vol. 91, no. 3, pp. 938-947, 2006.
    [75] F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Applied Materials & Interfaces, vol. 6, no. 9, pp. 6281-6289, 2014.
    [76] R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, “A review on surface-enhanced Raman scattering,” Biosensors, vol. 9, no. 2, pp. 57, 2019.
    [77] S.-C. Luo, K. Sivashanmugan, J.-D. Liao, C.-K. Yao, and H.-C. Peng, “Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review,” Biosensors and Bioelectronics, vol. 61, pp. 232-240, 2014.
    [78] M. Matrosovich, A. Tuzikov, N. Bovin, A. Gambaryan, A. Klimov, M. R. Castrucci, I. Donatelli, and Y. Kawaoka, “Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals,” Journal of Virology, vol. 74, no. 18, pp. 8502-8512, Sep, 2000.
    [79] B. Sathya, S. Karthi, K. Ajaijawahar, and M. Prasath, “Probing the vibrational spectroscopic properties and binding mechanism of anti-influenza agent Liquiritin using experimental and computational studies,” Research on Chemical Intermediates, vol. 46, no. 10, pp. 4475-4507, Oct, 2020.
    [80] A. Sengupta, S. S. Hassan, and P. P. Choudhury, “Clade GR and clade GH isolates of SARS-CoV-2 in Asia show highest amount of SNPs,” Infection, Genetics and Evolution, vol. 89, pp. 104724, 2021.
    [81] Y. Peng, C. Lin, L. Long, T. Masaki, M. Tang, L. Yang, J. Liu, Z. Huang, Z. Li, and X. Luo, “Charge-Transfer Resonance and Electromagnetic Enhancement Synergistically Enabling MXenes with Excellent SERS Sensitivity for SARS-CoV-2 S Protein Detection,” Nano-micro Letters, vol. 13, no. 1, pp. 1-17, 2021.
    [82] A. C. Walls, Y.-J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, and D. Veesler, “Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein,” Cell, vol. 181, no. 2, pp. 281-292. e6, 2020.
    [83] F. Wu, J. Zhang, A. Xiao, X. Gu, W. L. Lee, F. Armas, K. Kauffman, W. Hanage, M. Matus, and N. Ghaeli, “SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases,” Msystems, vol. 5, no. 4, pp. e00614-20, 2020.
    [84] G. Zhu, X. Zhu, Q. Fan, and X. Wan, “Raman spectra of amino acids and their aqueous solutions,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 78, no. 3, pp. 1187-1195, 2011.
    [85] D. Němeček, and G. J. Thomas Jr, "Raman spectroscopy of viruses and viral proteins," Frontiers of Molecular Spectroscopy, pp. 553-595: Elsevier, 2009.
    [86] M. Zhang, X. Li, J. Pan, Y. Zhang, L. Zhang, C. Wang, X. Yan, X. Liu, and G. Lu, “Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva using SERS-based biosensor,” Biosensors and Bioelectronics, pp. 113421, 2021.

    無法下載圖示 校內:2026-08-24公開
    校外:2026-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE