簡易檢索 / 詳目顯示

研究生: 林佑任
Lin, Yu-Jen
論文名稱: 轉爐石應用於高速公路之績效評估
Performance Evaluation of Basic Oxygen Furnace Slag Applied to Freeways
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系碩士在職專班
Department of Civil Engineering (on the job class)
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 115
中文關鍵詞: 循環經濟(Circular Economy)轉爐石(Basic Oxygen Furnace slag, BOF)
外文關鍵詞: Circular Economy, Basic Oxygen Furnace lag (BOF)
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來循環經濟(Circular Economy)受到世界各國重視,轉爐石(Basic Oxygen Furnace slag, BOF)乃是煉鋼的副產品之一,再利用成為必須面對之議題。本研究評估轉爐石應用於密級配瀝青混凝土(BOF-DGAC)之路面績效,進行鋪築前後現地檢測,檢測項目包含車轍量試驗、Clegg衝擊試驗,並進行鋪面鑽心取樣,鑽心試體進行回彈模數MR及間接張力試驗,比較其耐久性、安全性及工作性質。研究結果顯示,耐久性方面,服務最久26個月之變形量仍小於輕微車轍;鋪築後CIV值均大於70,顯示鋪面材料結構強度與路基承載力良好;間接張力強度平均約為1.39MPa,回彈模數平均約為4,735MPa,顯示轉爐石應用於密級配瀝青混凝土之強度足夠,有較佳的耐久性。安全性方面,轉爐石應用於密級配瀝青混凝土之BPN值平均為68,顯示轉爐石在安全性方面皆有一定水準,透過長期現場數據的蒐集與分析,可作為提升高速公路鋪面績效及道路主管機關養護作業之參考。

    In recent years, the circular economy has received attention from countries all over the world. Basic Oxygen Furnace slag (BOF) is one of the by-products of steelmaking, and reuse has become an issue that must be faced.This study evaluates the pavement performance of BOF-DGAC applied to densely graded asphalt concrete (DGAC).On-site inspection before and after paving. Testing items include rutting test and Clegg impact test. And take the pavement drill core sampling, and the drill core sample is subjected to the rebound modulus MR and indirect tension test. Compare its durability, safety and work nature. The research results show that in terms of durability, the deformation of the longest service for 26 months is still less than the slight rutting; the CIV value after paving is greater than 70, indicating that the structural strength of the paving material and the bearing capacity of the roadbed are good; the average indirect tensile strength is about 1.39MPa The average resilience modulus is about 4,735MPa, indicating that the converter stone used in dense-graded asphalt concrete has sufficient strength and better durability. In terms of safety, the average BPN value of converter stone applied to dense-graded asphalt concrete is 68, which shows that converter stone has a certain level of safety. Through long-term field data collection and analysis, it can be used to improve highway paving performance and roads. Reference for maintenance operations of the competent authority.

    目 錄 目錄........................................................................................................V 圖目錄..................................................................................................IX 表目錄.................................................................................................. XV 第一章 緒論.......................................................................................1-1 1.1 前言.......................................................................................1-1 1.2 研究動機................................................................................1-2 1.3 研究目的................................................................................1-3 1.4 研究範圍................................................................................1-3 第二章 文獻回顧................................................................................2-1 2.1 轉爐石………………..........................................................2-1 2.2 轉爐石基本性質…….…………………..…….........................2-4 2.2.1物理性質…..................................................................2-4 2.2.2 化學性質………..........................................................2-4 2.3 轉爐石之膨脹性質…..…………………..…….........................2-6 2.4 安定化實例評析…..…………………..…….........................2-7 第三章 研究方法................................................................................3-1 3.1 研究流程................................................................................3-1 3.2 試驗路段................................................................................3-3 3.2.1白河段路面………………..……………...3-3 3.2.2新營段路面………………..……………...3-6 3.2.3南投段路面………………..……………...3-9 3.3 評估方法..............................................................................3-12 3.3.1 永久變形量測…………...............................................3-12 3.3.2衝擊值試驗…………...............................................3-13 3.3.3摩擦力量測………………………...............................3-14 3.3.4平坦度量測………………………...............................3-16 3.3.5回彈模數.......................................................3-17 3.3.6間接張力..............................................................3-18 第四章 結果與討論..........................................................................4-1 4.1 整體說明……………..............................................................4-1 4.2 瀝青配合設計………………………..………........................4-1 4.2.1白河段路面瀝青配合設計.......................................4-1 4.2.2新營段路面瀝青配合設計.......................................4-5 4.2.3南投段路面瀝青配合設計......................................4-8 4.3 國道3 號白河段路面.………..………......................4-12 4.3.1 白河段鋪面狀況......................................................4-12 4.3.2 白河段鋪面永久變形…...............................................4-20 4.3.3 白河段鋪面衝擊值.....................................................4-20 4.3.4 白河段鋪面平坦度......................................................4-21 4.3.5 白河段鋪面摩擦力……...............................................4-22 4.3.6白河段鋪面鑽心試體…................................................4-23 4.3.7 白河段鋪面試驗數據...................................................4-26 4.4 國道1 號新營段路面.………..……...................4-29 4.4.1 新營段鋪面狀況......................................................4-29 4.4.2 新營段鋪面永久變形...................................................4-40 4.4.3 新營段鋪面衝擊值.....................................................4-40 4.4.4 新營段鋪面平坦度......................................................4-41 4.4.5 新營段鋪面摩擦力………............................................4-42 4.4.6 新營段鋪面鑽心試體………........................................4-43 4.4.7 新營段鋪面試驗數據………........................................4-45 4.5 國道3 號南投段路面.………..……...................4-49 4.5.1 南投段鋪面狀況......................................................4-49 4.5.2 南投段鋪面永久變形...................................................4-56 4.5.3 南投段鋪面衝擊值.....................................................4-58 4.5.4 南投段鋪面平坦度......................................................4-59 4.5.5 南投段鋪面摩擦力………............................................4-60 4.5.6 南投段鋪面鑽心試體...................................................4-61 第五章 結論與建議.............................................................................5-1 5.1 結論.......................................................................................5-1 5.1.1 國道3 號白河段路面……..............……………….…..5-1 5.1.2 國道1 號新營段路面……..…............…………….…..5-1 5.1.3 國道3 號南投段路面…………..............………….…..5-2 5.2 建議.....................................................................................5-2 參考文獻...........................................................................................參-1

    中華鋪面工程學會(2010),「轉爐石應用於瀝青混凝土鋪面研討會專輯」,台灣桃園。
    李育成、楊金成、蔡立文、俞明塗,2014,轉爐碴改質技術在中鋼之應用與突破,鑛冶,58(4),23-32。
    沈得縣、李成効(2011)轉爐石應用於瀝青混凝土鋪面使用手冊及注意事項, 2011年轉爐石應用於瀝青混凝土鋪面研討會。
    孟繁萱 (2017) 「柔性鋪面承載力與生命週期成本分析」,國立成功大學土木工程研究所碩士論文,台南。
    陳志遠 (2012) 轉爐石之回脹行為與其改善方法探討,國立成功大學土木工程研究所碩士論文,台南。
    許伯良、林平全、徐登科 (2011) 轉爐石產製與工程應用,2011年轉爐石應用於瀝青混凝土鋪面研討會,高雄,第414-421頁。
    黃然、紀茂傑、陳君弢、蔡嘉榮(2012)使用爐碴(石)對於混凝土力學與耐久性能之研究,內政部建築研究所委託研究報告。
    楊翔詠 (2000) 「水侵害對不同級配種類瀝青混凝土之影響」,國立
    成功大學土木工程研究所碩士論文,台南。
    經濟部工業局(2019)電弧爐還原碴安定化技術手冊,台北。
    鄭大偉、李韋皞、林冠宇、蔡志達、吳佳正、張祖恩、林凱隆、陳貞光(2018)煉鋼轉爐石之無機聚合安定化技術開發,鑛冶,62(4),52-53。
    European Commission Publication Office (2014) The Circular Economy:Connecting, Creating and Conserving Value. European Commission Publication Office, Luxembourg.
    Ellen MacArthur Foundation(2016) Circularity in the Built Environment:Case Studies, United Kingdom of Great Britain and Northern Ireland.
    Kambole, C., P. Paige-Green, W.K. Kupolati, J.M. Ndambuki, A.O. Adeboje (2017) Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilisation in southern Africa. Construction and Building Materials, Vol.148, pp.618-631.

    下載圖示
    2026-01-11公開
    QR CODE