簡易檢索 / 詳目顯示

研究生: 陳秉寬
Chen, Ping-Kuan
論文名稱: 應用增強型企業職級演算法於配電系統之負載削減及負載轉移排程規劃
Application of Enhanced Heap-Based Optimization Algorithm for Load Curtailment and Load shifting Scheduling of Distribution Systems
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 50
中文關鍵詞: 增強型企業職級演算法供電品質負載削減及負載轉移排程
外文關鍵詞: enhanced heap-based optimization algorithm, quality of supplying power, load-curtailment and load-shifting scheduling
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出增強型企業職級演算法應用於配電系統負載削減及負載轉移排程規劃,研究目標乃在於藉由負載削減及負載轉移,有效改善配電系統供電品質問題,同時兼具提昇經濟效益。本文首先建立負載削減及負載轉移之數學模型,並將最大電壓不平衡率及規劃成本共同整合為一多目標函數,然後輔以增強型企業職級演算法進行負載削減及負載轉移之排程擬定。本文所研發之增強型企業職級演算法係由企業上下級關係及員工工作方式啟發,並加以推導建立為尋優機制,有助於求解最佳化問題。而為驗證本文所提方法之可行性,本文透過IEEE測試系統及一實際配電系統進行模擬測試,並建立三種測試情境加以探討。由模擬結果可知,本文所提方法於求解負載削減及負載轉移排程規劃問題,確實優質可行,研究成果可提供電力規劃及調度施行參考。

    This study applies the enhanced heap-based optimization algorithm to load-curtailment and load-shifting scheduling of distribution systems, aiming at using load-curtailment and load-shifting to improve the power quality of distribution systems while economic efficiency is also concerned. The thesis starts with the formulation of mathematical models of load-curtailment and load-shifting, in which maximum voltage unbalance ratio and planning cost are included as multi-objective function while those constraints of distribution systems are taken into consideration as well. Following the formulation of the problem to solve, an enhanced heap-based optimization algorithm is developed to perform the work of load- curtailment and load-shifting scheduling of distribution systems. The enhanced heap-based optimization algorithm is developed based on mimicking the corporate ranking and the achievements of employees, by which it is modeled as an optimization method for solving problems. To verify the effectiveness of the method, this study applies the approach on an IEEE test system and a real distribution system under three different scenarios. Test results indicate the superiority and feasibility of the proposed method. The outcome gained from this study serves as beneficial references for power system planning and operation.

    中文摘要 I 英文摘要 II 目錄 VI 表目錄 VIII 圖目錄 IX 1 第一章 緒論 1 1-1 研究背景及動機 1 1-2 研究方法及步驟 2 1-3 論文各章重點簡述 4 2 第二章 問題描述 5 2-1 前言 5 2-2 需量反應措施介紹 5 2-3 負載削減及負載轉移排程規劃 7 2-3-1 負載削減及負載轉移數學模型建立 8 2-3-2 目標函數建立 9 2-3-3 配電系統運轉限制式 10 2-4 本章結論 11 3 第三章 增強型企業職級演算法 12 3-1 前言 12 3-2 企業職級演算法探討及數學模型建立 12 3-3 增強型企業職級演算法之演算流程介紹 16 3-3-1 應用增強型企業職級演算法於求解最佳化問題之演算流程 16 3-3-2 應用增強型企業職級演算法於負載削減及負載轉移排程演算流程 18 3-4 本章結論 23 4 第四章 研究測試結果 25 4-1 前言 25 4-2 演算法參數設定探討 25 4-2-1 IEEE之13個匯流排之測試分析 25 4-2-2 企業員工數(N)探討 28 4-2-3 工作執行方式選擇機率(P)之探討 28 4-3 模擬結果分析 29 4-3-1 IEEE之13個匯流排測試系統模擬結果分析 30 4-3-2 實際配電系統模擬分析 37 4-4 本章結論 42 5 第五章 結論及未來研究方向 43 5-1 結論 43 5-2 未來研究方向 44 參考文獻 45

    [1] 經濟部能源局,「能源發展綱領」,民國一百零六年。
    [2] C. Byers and A. Botterud, “Additional Capacity Value from Synergy of Variable Renewable Energy and Energy Storage,” IEEE Transactions on Sustainable Energy, Vol. 11, No. 2, pp. 1106-1109, April 2020.
    [3] Y. Yang, S. Bremner, C. Menictas, and M. Kay, “Battery Energy Storage System Size Determination in Renewable Energy Systems: A Review,” Renewable and Sustainable Energy Reviews, Vol. 91, pp. 109-125, August 2018.
    [4] S. Wang, S. Bi, and Y. A. Zhang, “ Demand Response Management for Profit Maximizing Energy Loads in Real-Time Electricity Market,” IEEE Transactions on Power Systems, Vol. 33, No. 6, pp. 6387-6396, November 2018.
    [5] M. Muratori and G. Rizzoni, “Residential Demand Response: Dynamic Energy Management and Time-Varying Electricity Pricing,” IEEE Transactions on Power Systems, Vol. 31, No. 2, pp. 1108-1117, March 2016.
    [6] P. Faria, J. Spiola, and Z.vale, “Aggregation and Remuneration of Electricity Consumers and Producers for the Definition of Demand-Response Programs,” IEEE Transactions on Industrial Informatics, Vol. 12, No. 3, pp. 952-961, June 2016.
    [7] F. Elghitani and W. Zhuang, “Aggregating a Large Number of Residential Appliances for Demand Response Applications,” IEEE Transactions on Smart Grid, Vol. 9, No. 5, pp. 5092-5100, September 2018.
    [8] W. Liu, D. Qi, and F. Wen, “Intraday Residential Demand Response Scheme Based on Peer-to-Peer Energy Trading,” IEEE Transactions on Industrial Informatics, Vol. 16, No. 3, pp. 1823-1835, March 2020.
    [9] S. Nan, M. Zhou, and G. Li, “Optimal Residential Community Demand Response Scheduling in Smart Grid,” Applied Energy, Vol. 210, pp. 1280-1289, January 2018.
    [10] A. Karapetyan, M. Khonji, C .Chau, K. Elbassioni, and H. H. Zeineldin, “Efficient Algorithm for Scalable Event-Based Demand Response Management in Microgrids,” IEEE Transactions on Smart Grid, Vol. 9, No. 4, pp. 2714-2725, July 2018.
    [11] K. Oikonomou, M. Parvania, and R. Khatami, “Optimal Demand Response Scheduling for Water Distribution Systems,” IEEE Transactions on Industrial Informatics, Vol. 14, No. 11, pp.5112-5122, November 2018.
    [12] K. Bruninx, H. Pandzic, H. Le Cadre, and E. Delarue, “On the Interaction Between Aggregators, Electricity Markets and Residential Demand Response Providers,” IEEE Transactions on Power Systems, Vol. 35, No. 2, pp. 840-853, March 2020.
    [13] M. A. Z. Alvarez, K. Agbossou, A. Cardenas, S. Kelouwani, and L. Boulon, “Demand Response Strategy Applied to Residential Electric Water Heaters Using Dynamic Programming and K-Means Clustering,” IEEE Transactions on Sustainable Energy, Vol. 11, No. 1, pp. 524-533, January 2020.
    [14] M. Song and M. Amelin, “Purchase Bidding Strategy for a Retailer With Flexible Demands in Day-Ahead Electricity Market,” IEEE Transactions on Power Systems, Vol. 32, No. 3, pp. 1839-1850, May 2017.
    [15] J. Saez-Gallego, M. Kohansal, A. Sadeghi-Mobarakeh, and M. Morales, “Optimal Price-Energy Demand Bids for Aggregate Price-Responsive Loads,” IEEE Transactions on Smart Grid, Vol. 9, No. 5, pp. 5005-5013, September 2018.
    [16] F. Elghitani and E. El-Saadany, “Smoothing Net Load Demand Variations Using Residential Demand Management,” IEEE Transactions on Industrial Informatics, Vol. 15, No. 1, pp. 390-398, January 2019.
    [17] P. Yang, P. Chavali, E. Gilboa, and A. Nehorai, “Parallel Load Schedule Optimization with Renewable Distributed Generators in Smart Grids,” IEEE Transactions on Smart Grid, Vol. 4, No. 3, pp. 1431-1441, August 2013.
    [18] D. Yu, H. Liu, and C. Bresser, “Peak Load Management Based on Hybrid Power Generation and Demand Response,” Energy, Vol. 163, pp. 969-985, November 2018.
    [19] E. S. Parizy, H. R. Bahrami, and S. Choi, “A Low Complexity and Secure Demand Response Technique for Peak Load Reduction,” IEEE Transactions on Smart Grid, Vol. 10, No. 3, pp. 3259-2168, May 2019.
    [20] A. Rabiee, S. M. Mohseni-Bonab, M. Parniani, and I. Kamwa, “Optimal Cost of Voltage Security Control Using Voltage Dependent Load Models in Presence of Demand Response,” IEEE Transactions on Smart Grid, Vol. 10, No. 3, pp. 2383-2395, May 2019.
    [21] I. Diaz de Cerio Mendaza, I. G. Szczesny, J. R. Pillai, and B. Bak-Jensen, “Demand Response Control in Low Voltage Grids for Technical and Commercial Aggregation Services,” IEEE Transactions on Smart Grid, Vol. 7, No, 6, pp. 2771-2780, November 2016.
    [22] N. Karthikeyan, J. R. Pillai, B. Bak-Jensen, and J. W. Simpson-Porco, “Predictive Control of Flexible Resources for Demand Response in Active Distribution Networks,” IEEE Transactions on Power Systems, Vol. 34, No. 4, pp. 2957-2969, July 2019.
    [23] Z. Akhtar, B. Chaudhuri, and S. Y. R. Hui, “Smart Loads for Voltage Control in Distribution Networks,” IEEE Transactions on Smart Grid, Vol. 8, No. 2, pp. 937-946, March 2017.
    [24] J. Ponocko and J. V. Milanovic, “Multi-Objective Demand Side Management at Distribution Network Level in Support of Transmission Network Operation,” IEEE Transactions on Power Systems, Vol. 35, No. 3, pp. 1822-1833, May 2020.
    [25] Z. Zhao, W. C. Lee, Y. Shin, and K. Song, “An Optimal Power Scheduling Method for Demand Response in Home Energy Management System,” IEEE Transactions on Smart Grid, Vol. 4, No. 3, pp. 1391-1400, September 2013.
    [26] C. B. Li, X. F. Jia, Y. Zhou, and X. P. Li, “A Microgrids Energy Management Model Based on Multi-Agent System Using Adaptive Weight and Chaotic Search Particle Swarm Optimization Considering Demand Response,” Journal of Cleaner Production, Vol. 262, July 2020.
    [27] Q. Askari, M. Saeed, and I. Younas, “Heap-based Optimizer Inspired By Corporate Rank Hierarchy for Global Optimization,” Expert Systems with Applications, Vol. 161, December 2020.
    [28] S. K. Elsayed, S. Kamel, A. Selim, and M.Ahmed, “An Improved Heap-Based Optimizer for Optimal Reactive Power Dispatch,” IEEE Access, Vol. 9, pp. 58319-58336, 2021.
    [29] X. Yan, Y. Ozturk, Z. Hu, Y. H. Song, “A Review on Price-Driven Residential Demand Response,” Renewable and Sustainable Energy Reviews, Vol. 96, pp. 411-419, November 2018.
    [30] R. Alasseri, T. J. Rao, and K. J. Sreekanth, “Institution of Incentive-Based Demand Response Programs and Prospective Policy Assessments for a Subsidized Electricity Market,” Renewable and Sustainable Energy Reviews, Vol. 117, January 2020.
    [31] A. Batista, D. Pozo, and J. Vera, “Stochastic Time-of-Use-Type Constraints for Uninterruptible Services,” IEEE Transactions on Smart Grid, Vol. 11, No. 1, pp. 229-232, September 2020.
    [32] Q. Wang, C. Zhang, Y. Ding, G. Xydis, J. Wang, and J. Ostergaard “Review of Real-Time Electricity Markets for Integrating Distributed Energy Resources and Demand Response,” Applied Energy, Vol. 138, pp. 695-706, January 2015.
    [33] Z. Almahmoud, J. Crandall, K. Elbassioni, T. T. Nguyen, and M. Roozbehani, “Dynamic Pricing in Smart Grids Under Thresholding Policies,” IEEE Transactions on Smart Grid, Vol. 10, No. 3, pp. 3415-3429, May 2019.
    [34] J. Vuelvas and F. Ruiz, “Rational Consumer Decisions in a Peak time Rebate Program,” Electric Power Systems Research, Vol. 143, pp. 533-543, February 2017.
    [35] J. C. S. Sousa, O. R. Saavedra, and S. L. Lima, “Decision Making in Emergency Operation for Power Transformers With Regard to Risks and Interruptible Load Contracts,” IEEE Transactions on Power Delivery, Vol. 33, No. 4, pp. 1556-1564, August 2018.
    [36] H. Mortaji, S. H. Ow, M. Moghavvemi, and H. A. F. Almurib, “Load Shedding and Smart-Direct Load Control Using Internet of Things in Smart Grid Demand Response Management,” IEEE Transactions on Industry Applications, Vol. 53, No. 6, pp. 5155-5163, December 2017.
    [37] H. Mohsenian-Rad, “Optimal Demand Bidding for Time-Shiftable Loads,” IEEE Transactions on Power Systems, Vol. 30, No.2, pp. 939-951, March 2015.
    [38] IEEE Standard 141-1993, “IEEE Recommended Electric Power Distribution for Industrial Plants,” pp. 89-91, April 1994.
    [39] 台灣電力公司股份有限公司,「需量競價措施」,民國一百零八年。
    [40] 台灣電力公司電價表 [Online]Available:
    https://taipowerdsm.taipower.com.tw/residential-and-commercial

    無法下載圖示 校內:2026-08-11公開
    校外:2026-08-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE