| 研究生: |
蘇明章 Su, Ming-Chang |
|---|---|
| 論文名稱: |
鈦酸鍶GBBL的開發 Development of SrTiO3 Base GBBL |
| 指導教授: |
李文熙
Lee, Wen-Sh |
| 共同指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 鈦酸鍶 、順電性 、摻雜 、再氧化 、GBBL |
| 外文關鍵詞: | strontium titanate, paraelectric, doped, re-oxidation, GBBL |
| 相關次數: | 點閱:52 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文實驗主要使用鈦酸鍶為主材,利用其施體摻雜提高介電常數的特性及順電性、具低相轉換溫度對溫度穩定的特性,期望得到優於鈦酸鋇系統的陶瓷電容器的材料組成。
本實驗主要分成三大實驗,第一部份探討摻雜YM摻雜物及氧化錳(MnO2)含量對絕緣電阻的影響,並摻雜1.0 mol%(原子)的五氧化二釩期使燒結溫度降低於1350℃,第二部份探討摻雜氧化鈮(Nb2O5 )提昇介電常數,第三部份探討摻雜碳酸鋰(Li2CO3)、五氧化二釩(V2O5 )及氧化銅(CuO) 含量對絕緣電阻的影響。
實驗結果得知,沒有氧化鈮的摻雜下,YM摻雜物其含量在5 .0wt%可具較佳的絕緣電阻;錳的最佳含量為0.5 mol%(原子),可得較高介電常數並可得一定水準的絕緣電阻約1.0E8Ω;2.0 mol%(原子)氧化鈮的摻雜可使介電常數提昇,但絕緣電阻則降低約一個級距;碳酸鋰的摻雜使試樣密度穩定於5.0 g/cm3,絕緣電阻隨其含量的增加有提昇的趨勢;五氧化二釩的含量的摻雜,對晶粒大小有顯著的影響,晶粒大小隨著含量的增加而變大,當其含量大於等於2.0 mol%(原子)時其介電常數維持在一定水準,約8000,而介電損失在其含量為2.0 mol%(原子)時為一最低的反曲點 — 1600E-4,絕緣電阻則在2.5 mol%(原子)時為一最高反曲點—9.53E7Ω;氧化銅的效應則是壓抑晶粒成長,對介電特性則有降低介電常數的效應、增大介電損失及降低絕緣電阻的趨勢。在我們的實驗也驗証了再氧化熱處理持溫1小時、溫度1000℃下有提昇絕緣電阻的效果,但介電常數則降低約27%。
當前較適當的組成為鈦酸鍶摻雜2.0 mol%(原子)的氧化鈮、0.5 mol%(原子)的二氧化錳、5.0 wt%的YM摻雜物、2.0 mol%(原子)的五氧化二釩及0.25 wt%的碳酸鋰,介電常數約8000,介電損失約1600E-4。絕緣電阻水準在1.0E7Ω,主因在於金屬玻璃沒有偏析於晶界中。
In our experiment, we select the strontium titanate, SrTiO3, as the main powder. And we make it with donor doped to gain the high dielectric constant, and it is equipped with the properties of paraelectric, stable temperature dependence of lower phase transition temperature . Purposed to gain the properties of the mixed composition are better than it of barium titanate, BaTiO3.
This experiment are mainly divided into three portions, the first portion is studied the effect of YM dopant and MnO2 on the insulated resistance and it is also doped the V2O5 , 1 mol% (at.) purposed to lower the sintering temperature under 1350℃. The second portion is studied the effect of the Nb2O5 on the dielectric constant. The third portion is studied the effect of Li2CO3, V2O5 and CuO on the insulated resistance.
From the experiment result, we get the suitable quantity of YM dopant, 5.0 wt% without Nb2O5 doped to get a higher insulated resistance. The suitable content of MnO2 is 0.5 mol%(at.) to get a better dielectric properties, insulated resistance,1.0E8Ω and dielectric constant, 1666E-4. The 2.0 mol%(at.) of Nb2O5 doped can gain the higher dielectric constant, but the insulated resistance will down a decade. The bulk density of it doped with Li2CO3, can be kept around 5.0 g/cm3 stably. And the insulated resistance increases , the dielectric loss decreases with its content increase. The V2O5 shows a clear effect to depress grain growth, the dielectric constant will be kept around 8000 when its content is not smaller than 2.0 mol%(at.), the dielectric loss is lowest value, 1600E-4 when its content is 2.0 mol%(at.) and the insulated resistance is highest value when its content is 2.5 mol%(at.). The CuO effect is to depress the grain growth, and it has the effect to reduce the dielectric constant, to enlarge the dielectric loss and to reduce the insulated resistance. We also verify the effect of the post-heat treatment re-oxidation. The insulated resistance can be raised one decade when its condition is that the temperature,1000℃, the soaking time—1 hour in air. And the dielectric constant will be down around 27%.
The suitable composition is that the SrTiO3 doped with 2.0 mol%(at.) of Nb2O5 , 0.5 mol%(at.) of MnO2, 5.0 wt% of YM dopant, 2.0mol%(at.) of V2O5 and 0.25 wt% of Li2CO3. The dielectric constant will be around 8000 and the dielectric loss will be around 1600E-4. The insulated resistance level around 1.0E7Ω is owing that the glass fluxes do not exist in the grain boundary.
1. A. Ianculescu, A. Braileanu and M. Zaharescu “Formation and properties of some Nb-doped SrTiO3-based solid solutions” J, thermal analysis and Calorimetry, 72, 173-180 (2003)
2. A.J.Moulson and J.M. Herbert, “Electroceramics”, 2nd edition, Wiley, (2006)
3. A.Okazaki and M. Kawaminami, Mater. Res. Bull. 8, 545 (73)
4. Cheng-Sao Chen, Chen-Chia Chou & I-Nan Lin,” Microstructure of X7R Type Base-Metal-Electroded BaTiO3 CapacitorMaterials Co-Doped with MgO/Y2O3 Additives”, J. Electroceramics, 13, 567-571 (2004)
5. D. M. Smyth, N.G. Eror, J. Am. Ceram. Sec. 54[9], p 455 (1995)
6. Detlev F.K. Henning, “Dielectric materials for sintering in reducing atmospheres”, J.Euop. Ceram. Soc., 21, 1637-1642 (2001)
7. Dong-Hau Kuo, Chih-Hung Wang and Wen-Ping Tsai, “ Donor- and acceptor-cosubstituted BaTiO3 for nonreducible multilayer ceramic capacitors”, Ceramic International, 32, 1-5 (2006)
8. Hui-Shen, Yuanwei Song and Hui Gu “A high-permittivity SrTiO3-based grain boundary berrier layer capacitor material single-fired under low temperature”, Material Letters, 56, 802-805 (2002)
9. I. Buru, S. Neirman, “Dielectric Properties of Donor-Doped Polycrystalline SrTiO3”, J. Mat. Sci. 17, 3510-3524 (1982)
10. ibid, “The Compound Sr3Ti2O7 and Its Structure”, Ibid.,11,54-55 (1958)
11. J. Daniels, K. H. Hardtl and R. Wernicks, “The PTCR Effect of Barium Titanate”, Philips Tech. Rev. 38 [3], 73-82 (1978/1979)
12. Jae-Ho Jeon, Joo Seon Kim and Suk-Joong L. Kang, “Atmosphere control of interface migration and its effect on dielectric property of CuO-infilrated Strontium Titanate”, J. Am. Cerami. Soc. 79[6], 1499-503 (1996)
13. Jianying Li, Shengtao Li and Mohammad A. Alim, “The effect of reducing atmosphere on the SrTiO3 based varistor-capacitor”, Mater Electron, 17, 503-508 (2006)
14. Jingchang Zhao, Xinghui Wu, Longtu Li and Xian Li “Preparation and electrical properties of SrTiO3 ceramics doped with M2O3-PbO-CuO”, Solid-State Electronics, 48, 2287-2291 (2004)
15. Jyh-Shim Chen, Ron-Jong Young and Tai-Bor Wu, “Densification and Microstructural Development of SrTiO3 Sintered with V2O5 “, J. Am. Ceram. Soc. 70[10], C260-264 (1987)
16. Liqin Zhou, Zhihua Jiang and Shuren Zhang, “Electrical Properties of Sr0.7Ba0.3TiO3 Ceramics Doped with Nb2O5, 3Li2O-2SiO2 and Bi2O3”, J. Am. Cerami. Soc. 74[11], 2925-2927 (1991)
17. Long Wu,Cheng-Fu Yang, Tien-shou Wu, “Influence of sintering and annealing temperature on grain boundary barrier layer capacitors in a modified reduction-reoxidation method”, Mater Electron, 3, 272-277 (1992)
18. Longtu Li, Jingchang Zhao and Zhilum Gui, “The thermal sensitivity and dielectric properties of SrTiO3-based ceramics” Ceramics International , 30, 1073-1078 (2004)
19. M.-B.Park, N.-H.Cho & C.-D. Kim, “Control of the Grain Boundary Electrical Features of the Semiconducting SrTiO3 based Ceramics Synthesized from Surface-Coated Powders”, J. Electroceramics, 9, 37-48 (2002)
20. Masayuki Fujimoto and W. David Kingery,”Microstructure of SrTiO3 Internal Boundary Layer Capacitors During and After Processing and Rsultant Electrical Properties”, J. Am. Ceram. Soc. 68[4], 169-173 (1985)
21. N. H. Chan, R. K. Sharma, D. M. Smyth, “Nonstichiometry in SrTiO3”, J. Electrochem. Soc. Solid-state Science and Technology, 128[8], 1762-1769 (1981)
22. R. Wernicke,”Formation of Second-Phase Layers in SrTiO3 Boundary Layer Capacitors”, ibid, 261-271
23. R.A. van der Berg, “ Investigation of Semiconducting Strontiom Titanate In Bulk and Thin Films”, Nederlandse Philips Bedrijven B.V. Group, page 7,(1993)
24. Role of yttrium and magnesium in the formation of core-shell structure of BaTiO3 grains in MLCC”, J.Euop. Ceram. Soc., 28, 1213-1219 (2008)
25. Rui Shao, Dawn A. Bonnell, “Interface mediated transport properties in n-type SrTiO3 :Induced dipole alignment at oxide grain boundaries”, J Electroceram, 17,211–219 (2006)
26. S. N. Ruddlesden and P. Popper,”New Compounds of the K2NiF4 Type”, Acta Cryst. 10, 538-540 (1957)
27. S.Jayanthi, and T. R. N. Kutty,”Giant dielectrics from modified boundary layers in n-BaTiO3 ceramics involving selective melting reactions of silver/glass composites at the grain boundaries”, J Material Sci. : Materials In Electronics, 16, 269-279, (2005)
28. Seong-Ho Kim and Jae-Dong Byun,”Effect of Na-diffusion on the electrical proprties of SrTiO3”, J. Materials Sci., 34,3057-3061 (1999)
29. Shuren Zhang, Chaowei Zhong, Xiaoliang Qin and Yaohong Ye, “Investiation of Low-Temperature-Fired Strontium Titanate Multilayer Grain-Boundary Layer Capacitors”, J. Am. Ceram. Soc. 78[5], 1391-92(1995)
30. Suk-Joong L. Kang, Sang-Yoon Koo, Jae-Ho Jeon and Janusz Nowotny, “Improvement of Dielectric Properties of SrTiO3-based Materials Through Grain-Boundary Engineering”, Ionics, 7, 315-318 (2001)
31. Sung-Yoon Chung and Suk-Joong L. Kang, “Effect of sintering atmosphere on grain boundary segregation and grain growth in Niobium-doped SrTiO3”, J. Am. Cerami. Soc. 85[11], 2805-10 (2002)
32. Takaaki Tsurumi, Motohiro Shono, Hirofumi Kakemoto, Staoshi Wada, Kenji Saito, Hirokazu Chazono,” Mechanism of capacitance aging under DC-Bias field”, J. Electroceram. (2007)
33. Tatsuhiko Itoh, Shinjiro Tashiro and Hideji Igarashi, ”Fabrication of Multilayer Barrier Layer capacitors with Semiconducting (Ba,Sr)TiO3 Ceramics” Jpn. J. Appl. Phys., 32, 4261-4264 (1993)
34. U. Balachandran, N. G. Eror, “Electrical Conductivity in Strontium Titanate”, J. Solid State Chem. 39, 351-359 (1981)
35. U. Balachandran, N. G. Eror,”Electiacal Conductivity in Lanthanum-Doped Strontium Titanate”, J. Electrochem. Soc.:Solid-State Sci. and Tech. 129[5], 1021-1026 (1982)
36. W. Heywang,”Bariumtitanat Als Sperrschichthalbleiter”, Solid-State Electronics, 3, 51-58 (1961)
37. Youichi Mizuno, Tomoya Hagiwara, Hirokazu Chazono and Hiroshi Kiski, “Effect of milling process on core-shell microstructure and electrical properties for BaTiO3-based Ni-MLCC”, J. Europ. Ceram. Soc. 21, 1649-1652 (2001)
38. Yukio Sakabe, Yukio Hamaji, Harunobu Sano and Nobyuyki Wada, “Effects of rare-earth oxides on the rliability of X7R dielectrics” Jpn. J. Appl. Phys., 41, 5688-5673 (2002)
39. Zhiyong Zhabg Lili Zhao, Xuewen Wang and Junsan Yang, “The preparation and electrical properties of SrTiO3-based Capacitor-Varistor Double-Function ceramics” J. Sol-Gel and Technology, 32, 367-370 (2004)
40. 李英杰, 黃彥霖,葉育源,楊長庭, 謝志宏, “Cu-doped Ba0.6Sr0.4TiO3 ceramics with high dielectric constant”, 中華民國陶業研究學會會刊, 28, 21-28 (2009)
41. 林春節,張輝炎, “微結構對半導鈦酸鍶性質影響之研究”, 成大礦冶及材料科學研究所碩士論文, 1988
42. 胡慶利,李英杰,李文熙, “Super High 100uF Multilayer Ceramic Capacitor Application and Development”,產業學會演講稿. (2004)
43. 鄧文浩, “半導型陶瓷電容器簡介”, 工業材料, 103期, 85-86 (84年)
校內:2015-02-11公開