| 研究生: |
李岱霖 Lee, Tai-Lin |
|---|---|
| 論文名稱: |
基於碳化矽之準Z源三相變頻器應用於內藏式永磁同步馬達 A SiC MOSFET-based Quasi-Z-Source Three-Phase Inverter for Interior Permanent Magnet Synchronous Motor Drive |
| 指導教授: |
謝旻甫
Hsieh, Min-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 準Z源轉換器 、準Z源三相變頻器 、內藏型永磁同步馬達 |
| 外文關鍵詞: | Quasi-Z-source converter, quasi-Z-source three-phase inverter, interior permanent magnet synchronous motor (IPMSM) |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著環保意識抬頭,各國政府紛紛制定明確的能源轉型路線與汽車產業革新政策,主要為擴大電動車(Electric Vehicle, EV)普及率。其中,內藏型永磁同步馬達因具有高功率密度、高扭矩密度、寬廣的轉速範圍等特性,逐漸成為電動車市場的主流應用趨勢。本文提出之驅動系統操作應用了準Z源三相變頻器,有效克服傳統變頻器在切換過程中可能發生的上下橋臂同時導通的潛在故障問題。而在QZSI架構中,上下橋臂同時導通(導通零態)不僅能避免開關擊穿的風險,還能藉由其能量轉換機制,將電感中累積的能量轉移至電容與DC Bus,進一步實現電壓升壓的效果。藉由這一特性,系統在較低直流輸入電壓下亦可驅動馬達達到更高轉速,提升可靠性與容錯性,同時拓展馬達的有效操作範圍。並利用MATLAB/Simulink進行整體系統的建模與動態模擬,驗證所提出控制架構的可行性與穩定性。實驗方面,成功驗證了系統在導通零態下的安全操作,並在輸入電壓受限的情況下,系統仍能提供足夠的DC Bus,顯示其拓展馬達運轉區間的潛力,適用於高性能與低電壓應用場景。
In recent years, as environmental awareness has risen, governments around the world have formulated clear energy transition roadmaps and automotive industry innovation policies, primarily aimed at increasing the adoption rate of electric vehicles (EVs). The interior permanent magnet synchronous motor (IPMSM) has gradually become the mainstream due to its high power density, high torque density, and wide speed range. The drive system operation proposed in this paper adopts a quasi-Z-source three-phase inverter, effectively overcoming the potential fault issue of simultaneous conduction of the upper and lower bridge arms that may occur in conventional inverters during switching. In the QZSI architecture, simultaneous conduction of the upper and lower bridge arms (shoot-through state) not only avoids the risk of DC bus breakdown but also utilizes its unique energy conversion mechanism to transfer the energy accumulated in the inductors to the capacitors and the DC bus, thereby achieving a voltage boosting effect. This enables the motor to reach higher speeds under lower DC input voltages, thereby expanding the effective operational range of the motor. MATLAB/Simulink is used for system modeling and dynamic simulation to verify the feasibility and stability of the proposed control. On the experimental side, the system successfully demonstrates safe operation under shoot-through states. Even under limited input voltage conditions, the system is able to supply sufficient bus voltage and power support, showing its potential to expand the motor's operating range.
[1] 面對電動車浪潮,充電樁成為關鍵配套措施 - SANTI 三地能源[Online]. [Available]:https://pourquoi.tw/intlnews-nasaoa-230924-1/.
[2] 黃得晉, “電動車驅動馬達發展現況”, 金屬中心(ITIS), 2012.
[3] 從矽到碳化矽過渡,碳化矽Cascode JFET為何能成為破局[Online]. [Available]:https://www.wpgdadatong.com/blog/detail/77065.
[4] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás and J. Rebollo, "A Survey of Wide Bandgap Power Semiconductor Devices," IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2155-2163, May 2014.
[5] E. Gurpinar and A. Castellazzi, "Single-Phase T-Type Inverter Performance Benchmark Using Si IGBTs, SiC MOSFETs, and GaN HEMTs," IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7148-7160, Oct. 2016.
[6] J. Anderson and F. Z. Peng, "Four quasi-Z-Source inverters," in Proceedings of 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 2008, pp. 2743-2749.
[7] 歐陽霆,“新型單相準Z源換流器 空間向量調變策略”,國立台灣科技大學電機工程系碩士論文,2017。
[8] 陳嘉慶,“用於準Z源換流器之新型調變策略開發”,國立台灣科技大學電機工程系碩士論文,2016。
[9] X. Ding, Z. Qian, S. Yang, B. Cui and F. Peng, "A High-Performance Z-Source Inverter Operating with Small Inductor at Wide-Range Load," in Proceedings of 2007 - Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition (APEC 07), Anaheim, CA, USA, 2007, pp. 615-620.
[10] S. Dong, Q. Zhang and S. Cheng, "Analysis of Critical Inductance and Capacitor Voltage Ripple for a Bidirectional Z -Source Inverter," IEEE Transactions on Power Electronics, vol. 30, no. 7, pp. 4009-4015, July 2015.
[11] W. Liu, Y. Yang, E. Liivik, D. Vinnikov and F. Blaabjerg, "Critical Parameter Analysis and Design of the Quasi-Z-Source Inverter," in Proceedings of 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2019, pp. 474-480.
[12] A. Paikray, S. Prudhvi and S. K. Nayak, "Impedance Network Design of the Quasi-Z-Source Inverter," in Proceedings of 2022 22nd National Power Systems Conference (NPSC), New Delhi, India, 2022, pp. 172-177.
[13] T. Senanayake, R. Iijima, T. Isobe and H. Tadano, "Improved impedance source inverter for hybrid/electric vehicle application with continuous conduction operation," in Proceedings of 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2016, pp. 3722-3726.
[14] I. Roasto, D. Vinnikov, J. Zakis and O. Husev, "New Shoot-Through Control Methods for qZSI-Based DC/DC Converters," IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 640-647, May 2013.
[15] U. S. Ali and V. Kamaraj, "A novel space vector PWM for Z-source inverter," in Proceedings of 2011 1st International Conference on Electrical Energy Systems, Chennai, India, 2011, pp. 82-85.
[16] V. P. Galigekere and M. K. Kazimierczuk, "Analysis of PWM Z-Source DC-DC Converter in CCM for Steady State," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 4, pp. 854-863, April 2012.
[17] Y. Li, S. Jiang, J. G. Cintron-Rivera and F. Z. Peng, "Modeling and Control of Quasi-Z-Source Inverter for Distributed Generation Applications," IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1532-1541, April 2013.
[18] T. Na, Q. Zhang and C. Zhou, "Modeling and design of quasi-Z-source inverter for PMSM drive system," in Proceedings of 2016 UKACC 11th International Conference on Control (CONTROL), Belfast, UK, 2016, pp. 1-5.
[19] Y. Liu, B. Ge, F. J. T. E. Ferreira, A. T. de Almeida and H. Abu-Rub, "Modeling and SVPWM control of quasi-Z-source inverter," in Proceedings of 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal, 2011, pp. 1-7.
[20] Y. Liu, B. Ge, H. Abu-Rub and F. Z. Peng, "Overview of Space Vector Modulations for Three-Phase Z-Source/Quasi-Z-Source Inverters," IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2098-2108, April 2014.
[21] P. C. Loh, D. M. Vilathgamuwa, C. J. Gajanayake, Y. R. Lim and C. W. Teo, "Transient Modeling and Analysis of Pulse-Width Modulated Z-Source Inverter," IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 498-507, March 2007.
[22] 陳俊霖、謝易儒,“淺談交流馬達d-q軸轉換”,馬達電子報第750期,2017。
[23] M. N. Gujjar and P. Kumar, "Comparative analysis of field oriented control of BLDC motor using SPWM and SVPWM techniques," in Proceedings of 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 2017, pp. 924-929.
[24] B. Li and C. Wang, "Comparative analysis on PMSM control system based on SPWM and SVPWM," in Proceedings of 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China, 2016, pp. 5071-5075.
[25] Y. Bai, X. Tang and G. Wu, “Speed control of flux weakening on interior permanent magnet synchronous motors,” in Proceedings of Transactions of China Electro Technical Society, vol. 26, pp. 54-60, 2011.
[26] Y. Liu, H. Abu-Rub and B. Ge, "Z-Source/Quasi-Z-Source Inverters: Derived Networks, Modulations, Controls, and Emerging Applications to Photovoltaic Conversion," IEEE Industrial Electronics Magazine, vol. 8, no. 4, pp. 32-44, Dec. 2014.
[27] ROHM, “SCT3022AL, N-channel SiC power MOSFET”, Datasheet, Nov. 2022.
[28] SeneSiC, “GD50MPS12H, Sillicon Carbide Schottky Diode”, Datasheet, Jul. 2021.
[29] 劉哲瑜,“以直流鏈電壓調控提升內藏型永磁同步馬達之高效率操作區間”,國立成功大學碩士論文,2022。
[30] TEXAS INSTRUMENTS, “TMS320F2837xD Dual-Core Microcontorllers”, Datasheet, Feb. 2021.
[31] YOKOGAWA , "Yokogawa Meters & Instruments Releases WT310 and WT330 Series Digital Power Meters".[Online]. [Available]:https://www.yokogawa.com/news/press-releases/2013/2013-01-09/.
[32] Teledyne, "T3PS Series - Power Supplies". [Online]. [Available]:www.teledynelecroy.com/power-supplies/.
[33] IDRC, "DSP-WR系列 - IDRC". [Online]. [Available]:https://www.idrc.com.tw/big5_ver/products/dspwr/dspwr-g3.htm.
[34] Teledyne, "MDA 8000HD 電機馬達分析儀". [Online]. [Available]:https://zh-tw.teledynelecroy.com/oscilloscope/mda-8000hd-motor-drive-analyzers.
[35] 吳俊霖,“以模型預測轉矩控制結合直流鏈電壓調控改善內藏型永磁同步馬達轉矩漣波與系統效率”,國立成功大學碩士論文,2024。
[36] 黃永翰,“以調變注入電壓及補償變頻器非線性效應提升轉子位置估測精度之全速域無感測器控制法”,國立成功大學碩士論文,2024。
[37] 陳念慈,“碳化矽功率元件應用於永磁同步馬達驅動器之系統響應分析”,國立成功大學碩士論文,2019。
[38] C. Song, C. Wang, D. Wang and C. Dang, "Expansion Transition Speed of PMSM under MTPA Control Strategy Based on Improved Voltage Loop Quasi-Z Source Inverter," in Proceedings of 2024 5th International Conference on Power Engineering (ICPE), Shanghai, China, 2024.
校內:2028-08-21公開