簡易檢索 / 詳目顯示

研究生: 呂宥澍
Lu, Yu-Shu
論文名稱: 利用物質點法分析關子嶺邊坡的滑動行為
Analyzing Slope Failure in Guanziling Using the Material Point Method
指導教授: 林冠中
Lin, Kuan-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 118
中文關鍵詞: 物質點法理想崩塌曲面流固耦合雙相流模擬降雨入滲邊坡穩定三維模擬關子嶺
外文關鍵詞: Material Point Method (MPM), Idealized Curved Surface (ICS), Fluid–Solid Coupling, Two-phase Analysis, Rainfall Infiltration, Slope stability, 3D simulation, Guanziling
相關次數: 點閱:17下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 邊坡穩定性問題一直是土木工程與地質工程領域的重要課題,尤其是在多雨地區,其對基礎設施安全與人類生命財產具有直接影響。本研究以關子嶺邊坡為案例,分析降雨入滲如何增加孔隙水壓、降低有效應力,最終引發邊坡失穩。傳統的邊坡穩定性分析方法主要依賴極限平衡法(Limit Equilibrium Method, LEM)和有限元素法(Finite Element Method, FEM)等數值方法。儘管 LEM 計算效率高,且在工程實務中廣泛應用,但其僅能提供整體穩定性指數,無法詳細呈現內部應力或變形;而 FEM 能捕捉邊坡內的應力–應變關係,但其基於網格的計算方法在大變形情境中易產生嚴重的網格變形。
    為了克服上述方法的局限性,本研究採用物質點法(Material Point Method, MPM)進行模擬,能夠準確模擬大變形與流體–固體耦合現象。在進行關子嶺邊坡分析前,本研究首先通過 MPM 的模擬結果與先前的物理試驗數據及其他數值方法進行驗證,比對結果顯示模型具有高度一致性與合理性,為後續分析奠定了理論基礎。隨後,以關子嶺潛在崩塌邊坡為例,先透過 MPM 分析估算破壞深度,作為滑動體幾何的建構基礎,再結合理想化崩塌曲面(Idealized Curved Surface, ICS)建立滑動初始形狀,進一步導入雙相流模型 MoSES_2PDF 模擬滑動與堆積行為,呈現崩塌過程從觸發至傳輸的完整發展。藉由 MPM、ICS 與 MoSES_2PDF 的整合,實現具三維地形對應能力的崩塌模擬流程,並應用於關子嶺實際地形,成功解析滑動行為與堆積區域空間分布,為後續災害潛勢評估與防災設計提供具體參考。

    Slope stability has long been a critical issue in the fields of civil and geotechnical engineering, particularly in regions with heavy rainfall, where it directly impacts infrastructure safety and human life and property. This study investigates the Guanziling slope as a case study to analyze how rainfall infiltration increases pore water pressure, reduces effective stress, and ultimately triggers slope failure. Traditional slope stability analysis methods primarily rely on the Limit Equilibrium Method (LEM) and the Finite Element Method (FEM). While LEM offers high computational efficiency and is widely used in engineering practice, it can only provide an overall safety factor without capturing internal stress or deformation. FEM, on the other hand, can simulate the stress–strain behavior within the slope but often suffers from severe mesh distortion under large deformation conditions due to its grid-based nature.
    To overcome these limitations, this study adopts the Material Point Method (MPM), which is capable of accurately modeling large deformations and fluid–solid coupling behavior. Prior to the Guanziling slope analysis, the MPM model was validated against physical experiments and other numerical methods. The comparison shows high consistency and reliability, thereby establishing a solid theoretical foundation for the subsequent analyses. Using the estimated failure depth from MPM as the geometric basis, an Idealized Curved Surface (ICS) was then constructed to define the initial shape of the sliding mass. This geometry was further input into the two-phase flow model MoSES_2PDF to simulate the full landslide process from failure initiation to subsequent runout and deposition. By integrating MPM, ICS, and MoSES_2PDF, this study develops a three-dimensionally consistent landslide simulation framework and applies it to real terrain data of Guanziling, successfully identifying sliding behavior and depositional zones. The proposed workflow provides concrete references for future hazard assessment and disaster mitigation planning.

    中文摘要 I Abstract II 誌謝 VI 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1. 研究動機與目的 1 1-2. 文獻回顧 2 1-3. 本文結構 4 第二章 物質點法 5 2-1. 基本概念 5 2-2. 控制方程式 6 2-2.1 力學本構方程 9 2-2.2 水力本構方程 10 2-2.3 邊界條件 11 2-3. 運算原理 13 2-3.1 數值離散化 13 2-3.2 計算週期 22 2-4. 組成律模型 24 第三章 數值模型驗證 26 3-1. 乾土柱崩塌試驗 26 3-1.1 物理實驗描述 26 3-1.2 數值模型建構 29 3-1.3 實驗與模擬結果比較 32 3-2. 非飽和堤防滲流破壞 35 3-2.1 物理實驗描述 35 3-2.2 數值模型建構 36 3-2.3 實驗與模擬結果比較 41 第四章 關子嶺邊坡分析 43 4-1. 岩盤影響 45 4-1.1 數值模型建構 45 4-1.2 潛變機制演化 51 4-1.3 崩塌歷程演化 54 4-2. 邊界條件影響 58 4-2.1 數值模型建構 58 4-2.2 潛變機制演化 59 4-3. 不同水位條件對坡體行為之影響 61 4-3.1 數值模型設定 61 4-3.2 潛變機制演化 63 4-3.3 崩塌歷程演化 66 4-4. 擋土牆模擬與分析 70 4-4.1 數值模型設定 70 4-4.2 破壞潛勢控制分析 71 4-4.3 崩塌歷程演化 75 第五章 多尺度耦合模擬 79 5-1. 理想崩塌曲面法 79 5-1.1 數學定義與幾何描述 80 5-1.2 ICS唯一化判定方法 82 5-2. MoSES_2PDF模型方法介紹 84 5-2.1 數學模型與方程式基礎 84 5-2.2 模型所需參數與輸入資料 87 5-2.3 模擬輸出與應用案例 87 5-3. 多尺度崩塌滑動模擬 88 第六章 結論與未來展望 94 6-1. 結論 94 6-2. 未來展望 95 參考文獻 96

    [1] 吳昱葵. 物質點法分析邊坡崩塌過程與運動機制: 以貓空邊坡為例. 國立臺灣大學土木工程學系學位論文, pages 1-182, 2020.
    [2] Francesca Ceccato. Study of large deformation geomechanical problems with the material point method. 2015.
    [3] Ha H Bui, Ryoichi Fukagawa, Kazunari Sako, and Shintaro Ohno. Lagrangian meshfree particles method (sph) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. International journal for numerical and analytical methods in geomechanics, 32(12):1537–1570, 2008.
    [4] Jonghyuk Baek, Ryan T Schlinkman, Frank N Beckwith, and Jiun-Shyan Chen. A deformation-dependent coupled lagrangian/semi-lagrangian meshfree hydromechanical formulation for landslide modeling. Advanced Modeling and Simulation in Engineering Sciences, 9(1):20, 2022.
    [5] 森年, 福原直樹, 服部敦, 桑野玲子, 我健一, 齋藤由紀子, and 佐木哲也. 粒子法河川堤防進行性破解析的討. 地盤工, 9(4):687–696, 2014.
    [6] Yih-Chin Tai, Chi-Jyun Ko, Kun-Ding Li, Yu-Chen Wu, Chih-Yu Kuo, Rou-Fei Chen, and Ching-Weei Lin. An idealized landslide failure surface and its impacts on the traveling paths. Frontiers in Earth Science, 8:313, 2020.
    [7] AW Skempton. Vane tests in the alluvial plain of the river forth near grangemouth. Geotechnique, 1(2):111–124, 1948.
    [8] Richard Haefeli. The development of snow and glacier research in Switzerland. Journal of Glaciology, 1(4):192–201, 1948.
    [9] Alan W Bishop. The use of the slip circle in the stability analysis of slopes. Geotechnique, 5(1):7–17, 1955.
    [10] Olgierd Cecil Zienkiewicz, AHC Chan, M Pastor, DK Paul, and T Shiomi. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. fully saturated problems. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 429(1877):285–309, 1990.
    [11] Samila Bandara and Kenichi Soga. Coupling of soil deformation and pore fluid flow using material point method. Computers and Geotechnics, 63:199–214, 2015.
    [12] B Wang, PJ Vardon, and MA Hicks. Rainfall-induced slope collapse with coupled material point method. Engineering Geology, 239:1–12, 2018.
    [13] Jean-Louis Briaud. Geotechnical engineering: unsaturated and saturated soils. John Wiley & Sons, 2023.
    [14] M Jaboyedoff, F Baillifard, R Couture, J Locat, and P Locat. Toward preliminary hazard assessment using DEM topographic analysis and simple mechanical modeling by means of sloping local base level. Landslides Evaluation and Stabilization. Balkema, pages 199–205, 2004.
    [15] Michel Jaboyedoff, Réjean Couture, and Pascal Locat. Structural analysis of Turtle Mountain (Alberta) using digital elevation model: toward a progressive failure. Geomorphology, 103(1):5–16, 2009.
    [16] Meei-Ling Lin, Te-Wei Chen, Ching-Weei Lin, Dia-Jie Ho, Keng-Ping Cheng, Hsiao-Yuan Yin, and Mei-Chen Chen. Detecting large-scale landslides using lidar data and aerial photos in the Namasha-Liouguey area, Taiwan. Remote Sensing, 6(1):42–63, 2013.
    [17] Brent G Delbridge, Roland Bürgmann, Eric Fielding, Scott Hensley, and William H Schulz. Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion landslide. Journal of Geophysical Research: Solid Earth, 121(5):3951–3977, 2016.
    [18] Chih-Yu Kuo, Pi-Wen Tsai, Yih-Chin Tai, Ya-Hsin Chan, Rou-Fei Chen, and Ching-Weei Lin. Application assessments of using scarp boundary-fitted, volume constrained, smooth minimal surfaces as failure interfaces of deep-seated landslides. Frontiers in Earth Science, 8:211, 2020.
    [19] Yih-Chin Tai, Julian Heß, and Yongqi Wang. Modeling two-phase debris flows with grain-fluid separation over rugged topography: Application to the 2009 Hsiaolin event, Taiwan. Journal of Geophysical Research: Earth Surface, 124(2):305–333, 2019.
    [20] Deborah Sulsky, Zhen Chen, and Howard L Schreyer. A particle method for history-dependent materials. Computer Methods in Applied Mechanics and Engineering, 118(1–2):179–196, 1994.
    [21] Anura3D MPM Research Community (2023). Anura3D version 2023 source code. <www.anura3d.com>.
    [22] Francesca Ceccato, Alba Yerro, Veronica Girardi, and Paolo Simonini. Two-phase dynamic MPM formulation for unsaturated soil. Computers and Geotechnics, 129:103876, 2021.
    [23] Daniel Hillel. Soil and water: physical principles and processes. Elsevier, 2012.
    [24] Yechezkel Mualem. Hysteretical models for prediction of the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(6):1248–1254, 1976.
    [25] Anura3D MPM Research Community (2022). Anura3D scientific manual version 2022.
    [26] H Mori, N Fukuhara, A Hattori, R Kuwano, K Soga, Y Saito, and T Sasaki. The SPH method for simulating the progressive sliding failure of a river levee. Jpn Geotech J, 9(4):687–96, 2014.
    [27] Kenichi Soga, E Alonso, Alba Yerro, K Kumar, and Samila Bandara. Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique, 66(3):248–273, 2016.
    [28] Haoyan Wei, Jiun-Shyan Chen, Frank Beckwith, and Jonghyuk Baek. A naturally stabilized semi-lagrangian meshfree formulation for multiphase porous media with application to landslide modeling. Journal of Engineering Mechanics, 146(4):04020012, 2020.
    [29] AR Khoei and T Mohammadnejad. Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two-and three-phase models for seismic analysis of earth and rockfill dams. Computers and Geotechnics, 38(2):142–166, 2011.
    [30] Jia-Jyun Dong, Yun-Shan Li, Chyh-Yu Kuo, Rui-Tang Sung, Ming-Hsu Li, Chyi-Tyi Lee, Chien-Chih Chen, and Wang-Ru Lee. The formation and breach of a short-lived landslide dam at Hsiaolin village, Taiwan—part I: post-event reconstruction of dam geometry. Engineering Geology, 123(1–2):40–59, 2011.
    [31] Ching-Weei Lin, Wei-Shu Chang, Shou-Heng Liu, Tsai-Tsung Tsai, Shin-Pin Lee, Yun-Chung Tsang, Chjeng-Lun Shieh, and Chih-Ming Tseng. Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan. Engineering Geology, 123(1–2):3–12, 2011.
    [32] Richard M Iverson, David L George, K Allstadt, Mark E Reid, Brian D Collins, James W Vallance, Steve P Schilling, Jonathan W Godt, CM Cannon, Christopher S Magirl, et al. Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth and Planetary Science Letters, 412:197–208, 2015.
    [33] Lulu Zhang, Jinhui Li, Xu Li, Jie Zhang, and Hong Zhu. Rainfall-induced soil slope failure. Florida: Taylor & Francis Group, 2016.
    [34] I. N. Bronstein, K. A. Semendjajew, G. Grosche, V. Ziegler, D. Ziegler, and E. Zeidler. Teubner-Taschenbuch der Mathematik. B.G. Teubner Verlagsgesellschaft, Leipzig, 1996.
    [35] Alan W Bishop and Norbert Morgenstern. Stability coefficients for earth slopes.Geotechnique, 10(4):129–153, 1960.
    [36] Hong Zheng. A three-dimensional rigorous method for stability analysis of landslides. Engineering Geology, 145:30–40, 2012.
    [37] Braja M Das and Nagaratnam Sivakugan. Fundamentals of geotechnical engineering. Cengage Learning, 2017.
    [38] Fausto Guzzetti, Francesca Ardizzone, Mauro Cardinali, Mauro Rossi, and Daniela Valigi. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3–4):222–229, 2009.
    [39] Isaac J Larsen, David R Montgomery, and Oliver Korup. Landslide erosion controlled by hillslope material. Nature Geoscience, 3(4):247–251, 2010.
    [40] Chi-Jyun Ko, Po-Chih Chen, Hock-Kiet Wong, and Yih-Chin Tai. MoSES_2pdf: A GIS-compatible GPU-accelerated high-performance simulation tool for grain-fluid shallow flows. arXiv preprint arXiv:2104.06784, 2021.
    [41] Yih-Chin Tai, Chih-Yu Kuo, and Wai-How Hui. An alternative depth-integrated formulation for granular avalanches over temporally varying topography with small curvature. Geophysical & Astrophysical Fluid Dynamics, 106(6):596–629, 2012.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE