簡易檢索 / 詳目顯示

研究生: 鄭詩璇
Zheng, Shi-Xuan
論文名稱: 在大範圍的輸入、輸出通道數目下精確估計測試向量數目
Accurate Estimation of Test Pattern Counts for a Wide-Range of Input/Output Channel Configurations
指導教授: 李昆忠
Lee, Kuen-Jong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 40
中文關鍵詞: 測試壓縮可測試設計配置選擇嵌入式確定性測試
外文關鍵詞: Test Compression, Design-for-Testability (DFT), Embedded Deterministic Test (EDT)
相關次數: 點閱:65下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 測試成本已成為大型業界電路中的關鍵問題。為了降低測試成本,業界採用了各種測試壓縮技術。選擇適當的輸入及輸出通道數目,能最好地使用測試壓縮技術。本篇論文提出了一種有效方法來估計嵌入式確定性測試(EDT)壓縮技術在不同的壓縮配置下的測試向量數目。為尋找準確估計的方法,我們建立了數學模型來揭示不同壓縮配置之間的關聯。這些模型是基於新穎的理論分析和實際實驗數據建立的。僅根據兩次ATPG運行的結果,就可以獲得對各種壓縮配置的測試向量數目的準確估計。依據9個業界電路的實驗結果,平均向量數目估計錯誤率約 5% 且僅有少數異常值。使用所提出的方法,測試壓縮設計人員可以輕鬆選擇最佳輸入和輸出通道配置以滿足設計需求。

    Test cost has become a critical issue for large industrial integrated circuits. To reduce the test cost, various test compression techniques have been adopted in the industry. Appropriate input and output channel counts must be selected to best utilize the test compression technology. This thesis presents an efficient and effective method to estimate the test pattern counts under different compression configurations for the Embedded Deterministic Test (EDT) compression technique. In searching for the accurate estimation method, we build mathematical models that reveal the internal relationship among different compression configurations. The models are established based on novel theoretical analysis as well as actual experimental data. Accurate estimation of test pattern counts for a wide range of compression configurations can be obtained based on the results of only two ATPG runs. Experimental results on 9 industrial circuits show that the average pattern count estimation error rate is about 5% with very few outliers. With the proposed method, a test compression designer can easily pick the best input and output channel configuration to fit the design needs.

    CHAPTER 1 INTRODUCTION 1 CHAPTER 2 PREVIOUS WORK 6 CHAPTER 3 METHOD OVERVIEW 9 CHAPTER 4 PATTERN COUNT ESTIMATION FOR DIFFERENT INPUT CONFIGURATIONS 11 4.1 Curve Finding 11 4.2 Profile Estimation 14 CHAPTER 5 PATTERN COUNT ESTIMATION FOR DIFFERENT OUTPUT CONFIGURATIONS 21 5.1 Fault Detection Curve Modeling 21 5.2 The Exponential Part Pattern Count Estimation 22 5.3 The Linear Part Pattern Count Estimation 24 5.4 Pattern Count Estimation for an Output Channel Configuration 25 CHAPTER 6 PATTERN COUNT ESTIMATION FOR MIDDLE CONFIGURATIONS 26 CHAPTER 7 EXPERIMENTAL RESULTS 29 7.1 Pattern Count Estimation 30 7.2 Optimum Test Configuration Selection 33 CHAPTER 8 CONCLUSIONS 35 References 36 PUBLICATIONS 39

    [1] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for Testability, Morgan Kaufmann, 2006.
    [2] N.A. Touba, “Survey of test vector compression techniques,” IEEE Design & Test of Computers, vol. 23, no. 4, pp. 294-303, July-Aug. 2006.
    [3] R. Kapur, S. Mitra, and T.W. Williams, “Historical perspective on scan compression,” IEEE Design & Test of Computers, vol. 25, no. 2, pp. 114-120, 2008.
    [4] K-J. Lee, J-J. Chen, and C-H. Huang, “Using a single input to support multiple scan chains,” in Proc. International Conference on Computer-Aided Design (ICCAD), 1998, pp. 74-78.
    [5] I. Hamzaoglu and J. H. Patel, “Reducing test application time for full scan embedded cores,” in Proc. International Symposium on Fault-Tolerant Computing, June 1999, pp. 260-267.
    [6] L.-T. Wang, X. Wen, S. Wu, Z. Wang, Z. Jiang, B. Sheu, and X. Gu, “VirtualScan: test compression technology using combinational logic and one-pass ATPG,” IEEE Design & Test of Computers, vol. 25, no. 2, pp. 122-130, 2008.
    [7] A. Chandra, R. Kapur and Y. Kanzawa, “Scalable Adaptive Scan (SAS),” in Proc. Design Automation and Test in Europe (DATE), 2009, pp. 1476-1481.
    [8] B. Koenemann, “LFSR-coded test patterns for scan designs,” in Proc. European Test Conference (ETC), 1991, pp. 237-242.
    [9] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, “Embedded Deterministic Test,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 5, pp. 776-792, May 2004.
    [10] K. Chakravadhanula, V. Chickermane, P. Cunningham, B. Foutz, D. Meehl, L. Milano, C. Papameletis, D. Scott, and S. Wilcox, “Advancing test compression to the physical dimension,” in Proc. International Test Conference (ITC), 2017, pp. 1-10.
    [11] C. Papameletis, V. Chickermane, B. Foutz, S. Singhal and K. Chakravadhanula, “Optimized Physical DFT Synthesis of Unified Compression and LBIST for Automotive Applications,” in Proc. IEEE International Test Conference (ITC), 2019, pp. 1-6.
    [12] E. Gizdarski, P. Wohl, and J. Waicukauski, “A new paradigm for synthesis of linear decompressors, ” in Proc. Design Automation Conference (DAC), 2017, pp. 1-6.
    [13] P. Wohl, J. A. Waicukauski, R. Kapur, S. Ramnath, E. Gizdarski, T. W. Williams, P. Jaini, “Minimizing the Impact of Scan Compression,” in Proc. IEEE VLSI Test Symposium (VTS), 2007, pp. 67-74.
    [14] C. Allsup and R. Kapur, “Predictive solutions for test—The next DFT paradigm?”, in Proc. IEEE International Test Conference (ITC), pp. 1-1, 2009.
    [15] S. M. Saeed and O. Sinanoglu, “A Comprehensive Design-for-Test Infrastructure in the Context of Security-Critical Applications,” IEEE Design & Test, vol. 34, no. 1, pp. 57-64, Feb. 2017.
    [16] J. Saikia, P. Notiyath, S. Kulkarni, A. Anbalan, R. Uppuluri, T. Fernandes, P. Bhattacharya, R. Kapur, “Predicting Scan Compression IP Configurations for Better QoR,” in Proc. Asian Test Symposium, 2011, pp. 261-266.
    [17] A. Zorian, B. Shanyour and M. Vaseekar, “Machine Learning-Based DFT Recommendation System for ATPG QOR,” in Proc. IEEE International Test Conference (ITC), 2019, pp. 1-7
    [18] S. Rooban and R. Manimegalai, “Prediction of Theoretical Limit for Test Data Compression,” in Proc. International Conference on Recent Trends in Advance Computing (ICRTAC), 2018, pp. 41-46
    [19] C.-H. Wu, Y. Huang, K.-J. Lee, W.-T. Cheng, G. Veda, S. Reddy, C.-C. Hu, C.-S. Ye, “Deep Learning Based Test Compression Analyzer,” in Proc. Asian Test Symposium (ATS), 2019, pp. 1-15.
    [20] F.-J. Tsai, C.-S. Ye, Y. Huang, S.-X. Zheng, K.-J. Lee, W.-T. Cheng, S. M. Reddy, M. Kassab, and J. Rajski, “Estimation of test data volume for scan architectures with different numbers of input channels,” in Proc. International Test Conference in Asia (ITC-Asia), 2020, pp. 130-135.
    [21] F.-J. Tsai, C.-S. Ye, K.-J. Lee, S.-X. Zheng, Y. Huang, W.-T. Cheng, S. M. Reddy, M. Kassab, J. Rajski, C. Wang, and J. Zawada, “Prediction of test pattern count and test data volume for scan architectures under different input channel configurations,” in Proc. International Test Conference (ITC), 2020, pp. 1-10.
    [22] C.-S. Ye, S.-X. Zheng, F.-J. Tsai, C. Wang, K.-J. Lee, W.-T. Cheng S. M. Reddy, M. Kassab, and J. Rajski, “Efficient Test Compression Configuration Selection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021.
    [23] J.-F. Côté, M. Kassab, W. Janiszewski, R. Rodrigues, R. Meier, B. Kaczmarek, P. Orlando, G. Eide, J. Rajski, G. Colon-Bonet, N. Mysore, Y. Yin, P. Pant, “Streaming Scan Network (SSN): An efficient packetized data network for testing of complex SoCs,” in Proc. Int’l Test Conf. (ITC), 2020.
    [24] J. Rajski, J. Tyszer, G. Mrugalski, W.-T. Cheng, N. Mukherjee, M. Kassab, “X-Press: Two-Stage X-Tolerant Compactor With Programmable Selector,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 1, pp. 147-159, 2008.

    下載圖示
    2023-01-26公開
    QR CODE