研究生: |
蔡育貽 Tsai, Yu-Yi |
---|---|
論文名稱: |
電荷式深能階暫態頻譜分析對有機半導體電洞傳輸層缺陷之研究 Traps analysis in hole transporting organic semiconductor by charge-based deep level transient spectroscopy |
指導教授: |
許渭州
Hsu, Wei-Chou |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 有機發光二極體 、NPB 、Q-DLTS 、defect state |
外文關鍵詞: | organic light emitting diode, NPB, Q-DLTS, defect state |
相關次數: | 點閱:44 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究主要利用電荷式深能階暫態頻譜去探討有機半導體電洞傳輸層之缺陷分析。研究主要分成兩部分: 第一部分以ITO / NPB / Al為基本二極體結構,分別以45 ℃,75 ℃和105 ℃進行30分鐘加熱處理,並求出缺陷濃度分別為3.13 × 1015cm-3,4.55 × 1015 cm-3,5.79 × 1015 cm-3和活化能深度分別為0.15 eV,0.13 eV,0.16 eV,最後製作 ITO / NPB / Alq3下發光綠光元件且進行10分鐘加熱處理。我們發現在低電流密度情況下,在105℃情況下擁有最佳效率1.6 cd/A,然而亮度卻無法提升。推測因為加熱處理使缺陷濃度提高,雖然導致載子漂移率降低可是卻提高載子複合率,而亮度無法提升,推測過多載子被缺陷捕捉,載子累積在NPB材料之中因而降低載子進入發光層導致亮度無法提昇。第二部份同樣以ITO / NPB / Al為基本二極體結構,並在NPB材料之中摻雜CuPc,以不同的摻雜濃度0%,1%,5%,10%分別求出缺陷濃度分別為9.72 × 1014 cm-3, 1.20 × 1015 cm-3,4.12 × 1015 cm-3,7.64 × 1015 cm-3和活化能深度分別為0.39 eV,0.261 eV,0.269 eV,0.268 eV。並最後製作ITO / NPB: X % CuPc / Alq3 / Al 下發光綠光元件,並發現當摻雜1%濃度可達到最佳效率1.5 cd/A,且最大亮度 3755 cd/m2 。
The primary research of my thesis by means of charge-based deep level transient spectroscopy to investigate hole transporting organic semiconductor. In my research is separated to two parts: In first part, the fundamental organic diode structure of device is ITO / NPB /Al, and the device were heating treatment with 45℃, 75℃ and 105℃ at 30 minutes. Then, we calculate the traps concentration 3.13 × 1015 cm-3,4.55 × 1015 cm-3,5.79 × 1015 cm-3, respectively. And Activation energy is 0.15 eV,0.13 eV,0.16 eV. Finally, we also fabricate green organic light emitting diode and heating treatment at 10 minutes. We discover that at low current density can achieve 1.6 cd/A at 105℃; however, luminance is not increased. We infer that traps decreased carrier mobility, it can increase carrier recombination in the emission layer. And heating treatment damaged the material structure result in carriers are captured by trapping level in the NPB layer and hence decreased the injection of carriers into emission layer. In the second part, the fundamental organic diode structure of device is ITO / NPB / Al, and doping CuPc into the NPB material. Then, we use different doped concentration in the range 0%, 1%, 5%, 10% and calculate the traps concentration 9.72 × 1014 cm-3, 1.20 × 1015 cm-3, 4.12 × 1015 cm-3, 7.64 × 1015 cm-3, respectively. Activation energy is 0.39 eV, 0.261 eV, 0.269 eV, 0.268 eV, respectively. Finally, we fabricate green organic light emitting diode. Device efficiency with 1% doped concentration have the better efficiency about 1.5 cd/A and luminance can achieve 3755 cd/m2.
[1] M. Pope, H. P. Magnante, and P. Magnante, J. Chem Phy., 38 ,2042 (1963)
[2] T.P. Nguyen, Dev. Polym. Sci.,6 , 45 (2002)
[3] C.W. TaA, and VanSlyke, Appl.Phys .Lett., 51 , 193 (1987)
[4] P.R. Barry, J. Genoe, and H. Paul, Photovolt: Res.Appl., 15:695-676 (2007)
[5] X. Zhang, J. Hu, Y.Wu, and F. Lu, J, Appl, Phys., 42 (2009)
[6] J.R. Sheats, D.B. Roitman, Synthetics., 95, 79 (1998)
[7] T.P. Nguyen, Dev. Polym. Sci.,6 , 45 (2002)
[8] D.V Lang, J Appl, Phys, Lett., 45,7 (1972)
[9] P.E. Burrows, Z. Shen, V. Bulovic, D.M. McCarty, S.R. Forrest, J.A. Cronin, and M.E. Thompson, J. Appl. Phys., 79, 7991 (1997)
[10] H. Antoniadis, M.A Abkowitz, and B.R. Hsieh, Appl Phys Lett., 65, 16 : 2030–2 (1994)
[11] J.A. Windheim , V. Venkatesan, D.M. Malta, and K Das, Diamond Relta. Mater., 2, 841 (1993)
[12] A.J Campbell, D.D.C. Bradley, and D.G Lidzey, J Appl Phys., 85, 12 (2004)
[13] A.J. Campbell, D.D.C. Bradley, and D.G. Lidzey, J. Appl. Phys., 82, 1961 (1997)
[14] T.P. Nguyen, V.H. Tran, and V. Massardier, J. Phys.: Condens. Matter., 5, 6243 (1993)
[15] V. Kazukauskas, H. Tzeng, and S.A. Chen. Appl. Phys .Lett., 80, 0179 (2002)
[16] S. Karg, J. Steigher, and H. von Seggern , Synth. Met., 111-112,277 (2001)
[17] H.L. Gomes, P. Stallinga, H. Rost A.B. Holmes, M.G. Harrison, and R.H. Friend, Appl. Phys. Lett., 74, 1144 (1999)
[18] A.J Campble, D.D.C. Bradley, E. Werner, and W. Brutting, Org. Electron., 1,21 (2000)
[19] D.V Lang, J Appl, Phys, Lett., 45,7 (1972)
[20] X. Zhang, J. Hu, Y. Wu, and F. Lu, J, Phys. D: Apple. Phys., 42, 145401 (2009)
[21] V.I. Polyakov, N.M. Rossukanyi, A.I. Rukovishnikov, S.M. Pimenov, A.V. Karabutov, and V.I. Knonv, J , Appl . Phys., 84, 2882 (1998)
[22] J.W. Farmer, C.D. Lamp, and J.M.Meese, Appl , Phys, Lett., 41, 11 (2000)
[23] K.L. Wang, and A. Evwaranye, J. Appl, Phys., 47 , 10 (1976)
[24] P.Blood, and J.W. Orton, Academic Press, 84, 2882 (1992)
[25] I. Thurzo, and M.Grendl, Meas. Sci. Technol., 3,726-731, (1992)
[26] M.A. Lampert, and P.Mark, (Academic, New York , 1970 )
[27] J.W.Farmer, C.D.Lamp, and J.M. Meese, Appl. Phys. Lett., 41, 11 (1982)
[28] J.Frankel, Phys.Rev., 54, 647 (1938)
[29] Z.B. Wang, M.G. Helander, M.T.Greiner, and J. Qiu, Z.H. Lu, J. Appl. Phys., 107, 034506 (2010)