| 研究生: |
張世樺 Chang, Shih-Hua |
|---|---|
| 論文名稱: |
聲學濁度儀之率定與應用 Calibration of acoustic backscatter system and its application. |
| 指導教授: |
黃煌煇
Hwung, Hwung-Hweng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 聲波衰減 、ABS儀器率定 、高嶺土 、玻璃珠 、絮凝 、沉降 |
| 外文關鍵詞: | signal attenuation, ABS, calibration, kaolinite, glass sphere, floccuration, settling process |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在利用聲波打到不同濃度之泥水溶液時產生不同反彈訊號強度之原理用以進一步判斷其濃度值。為了將迴響訊號轉換成濃度,本文修正聲波在水中受到的各項衰減影響及還原出正確之濃度數值以判斷全斷面濃度分布情形,進而即可應用訊號-濃度轉換關係式,以觀測靜止沉降之泥水交界面運動速度及濃度變化之過程。
本實驗研究係於濃度均勻且無氣泡影響之循環率定水槽進行ABS(Acoustic Backscatter System)聲學濃度儀之率定實驗,以排除外在因素對聲波訊號造成之干擾。於此使用玻璃珠及高嶺土作為觀測之對照粒子,藉此兩種外型及性質截然不同之粒子進行試驗以歸納出此儀器之濃度探測特性及能力。
由於聲波傳遞過程中會同時受到泥砂及水體造成的衰減,進而影響到濃度轉換的正確性,因此本研究根據儀器之設計理論及由實驗歸納出之衰減特性進行衰減修正,根據實驗數據發現得知粒子特性及傳播過程為兩項重要之衰減影響因素;前者包含粒徑、粒子外型及絮凝特性等,後者則包含了傳播距離、傳播方式及聲波頻率特性。最後基於均勻濃度之情況下各處訊號強度應相同之判斷標準,分析轉換後濃度數據是否符合實際情況來判定率定是否完成。
於ABS儀器率定完成後,衍引黃鈺軒(2009)所做之沉降研究資料,將之轉換為濃度數據並分析得到沉降過程中全斷面濃度之變化情形及交界面下沉速度,為觀測泥砂運動過程提供更簡便且可靠的方法。
The purpose of this thesis is to use the principle of reflective variation in signal intensity of sound backscatter varies with different suspended concentration for measuring the muddy water concentration and in particular the calibration of such acoustic backscatter system. In order to convert the signal into concentration, this study also corrected the signal attenuation which was effected by water and sand and analyzed the distribution of suspension. By using acoustic methodology, we monitor the settling process behavior and concentration of cohesive sediment under quiescent water.
In order to eliminate the externally influential factors, this ABS(Acoustic Backscatter System)calibrating experiment is conducted in a acrylic cylinder, which is a homogenous sediments suspension and no bubbles situation. Moreover, we use glass sphere and kaolinite as typical and really cohesive sediment, respectively, to compare with this two totally different sediment and obtain the property of ABS in concentration detection.
When the sound waves travel, the signals decrease due to sand and water then influence the accuracy of sediments suspension. Therefore, we use the ABS designed theory and the acquired character from experiment to adjust this attenuations. The two main attenuation factors in this experiment are the characteristic of sediment and the process of sound propagation. The former includes the sediment radius, shape and flocculation, while the latter includes the environment, propagation distance and sound frequency. Finally, according the constant of sediments concentration and the signal strength should be the same at arbitrary depth to determine whether the standard of the calibration is accomplished.
After calibrating the ABS and analyzing the data of settling experiment (Huang, 2009), we obtain the concentration distribution and settling velocity. In the study, the ABS provides more convenient and simple method for suspended sediment observation.
1.Alex E. Hay(1991), “Sound scattering from a particle-laden, turbulent jet”, Journal of the Acoustical Society of America, Vol. 90, pp. 2055-2074.
2.Alex E. Hay and Jin Yu Sheng(1992), “Vertical Profiles of Suspended Sand Concentration and Size From Multifrequency Acoustic Backscatter”, Journal of Geophysical Research, Vol. 97, pp. 15661-15677.
3.Andrew Downing and Peter D. Thorne and Christopher E. Vincent(1995), “Backscattering from a suspension in the near field of a piston transducer” , Journal of the Acoustical Society of America, Vol. 97, pp. 1614- 1620.
4.Arjen S. Schaafsma and Alex E. Hay(1997), “Attenuation in suspensions of irregularly shaped sediment particles: A two-parameter equivalent spherical scatterer model” , Journal of the Acoustical Society of America , Vol. 102, pp. 1485-1502.
5.Gert Bartholomeeusen(2003), “Compound Shock Waves and Creep Behaviour in Sediment Beds”, Ph.D. thesis, University of Oxford.
6.James J. Faran, JR. (1951), “Sound Scattering by Solid Cylinders and Spheres”, Journal of the Acoustical Society of America, Vol. 23, pp. 405-418.
7.JA Taylor , C E Vincent, P D Thorne, P J Hardcastle, V F Humphrey, J D Zhang, A Schaafsma, C M Dohmen-Janssen and M Perennes(1998), “Three- dimensional sediment transport measurements by acoustic(tridisma)”, JGR-Oceans, Vol. 2, pp.1108-1114.
8.Jinyu Sheng and Alex E. Hay(1998), “An examination of the spherical scatterer approximation in aqueous suspensions of sand”, Journal of the Acoustical Society of America, Vol. 83, pp. 598-610.
9.Kenneth G. Foote & M. A. Martini(2010), “Standard-target Calibration of an Acoustic Backscatter System”, JGR-Oceans, pp.1-5.
10.Kyle F.E. Betteridge ,Peter D. Thorne and Richard D. Cooke(2007), “ Calibrating multi-frequency acoustic backscatter systems for studying near-bed suspended sediment transport processes”, Continental Shelf Research, Vol. 28, pp. 227-235.
11.L. J. Hamilton, Z. Shii and S. Y. Zhang(1998), “Acoustic Backscatter Measurements of Estuarine Suspended Cohesive Sediment Concentration Profiles”, Journal of Coastal Research, Vol. 14, pp. 1213- 1224.
12.M. A. Martini and Kenneth G. Foote(2010), “Measurements of Echo Stability of an Acoustic Backscatter System”, JGR-Oceans, pp. 1-7.
13.Michalis Vousdoukas(2008), “Sediment dynamics in the Gulf of Marseille METROC Internal report no 5 Turbidity sensors intercalibration”.
14.Peter D. Thorne and Daniel M. Hanes(2002), “A review of acoustic measurement of small-scale sediment processes”, Continental Shelf Research, Vol. 22, pp. 603-632.
15.Peter D. Thorne and Michael J. Buckingham(2004), “ Measurements of scattering by suspensions of irregularly shaped sand particles and comparison with a single parameter modified sphere model”, Journal of the Acoustical Society of America , Vol. 116, pp. 2876-2889.
16.Peter D. Thorne and Peter J. Hardcastle(1997), “Acoustic measurements of suspended sediments in turbulent currents and comparison with in-situ samples”, Journal of the Acoustical Society of America , Vol. 101, pp.2603-2614.
17.Peter D. Thorne and Peter J. Hardcastle and Richard L. Soulsby(1993), “Analysis of Acoustic Measurements of Suspended Sediments”, Journal of Geophysical Research, Vol. 98, pp. 899-910.
18.Peter D. Thorne, Kendall R . Waters & Terry J . Brudner(1995), “ Acoustic measurements of scattering by objects of irregular Shape”, Journal of the Acoustical Society of America , Vol. 97, pp. 242-251.
19.Peter D. Thorne and Jon Taylor(2000), “Acoustic measurements of boundary layer flow and sediment flux”, Journal of the Acoustical Society of America , Vol. 108, pp. 1568-1581.
20.S. D. Richards , A. D. Heathershaw and P. D. Thorne.(1996), “The effect of suspended particulate matter on sound attenuation in seawater”, Journal of the Acoustical Society of America , Vol. 100, pp.1447- 1450.
21.Aquatec Group(2002), “Application note an4-Inversion technique”.
22.林志平、鐘志忠、張育嘉、楊錦釧、葉克家、洪銘堅、曾君敏(2001),「高泥砂濃度觀測:時域反射技術」,地工技術第83期,第5-12頁。
23.張浩維(2006),「石門水庫淤泥絮網沉降特性之研究」,國立成功大學水利及海洋工程研究所碩士論文。
24.林宏偉(2007),「雙相風扇馬達的雙迴路開關轉速控制」,國立中山大學電機工程學系碩士論文。
25.許少華、俞維昇、王朝勤(2007),「實驗尺度對黏性泥砂界面沉降之影響」,台灣水利,第12-20頁。
26.鄭建華、袁炎偉、賴文斌、楊富傑、姚仁志(2007),「本土化超音波水位流速量測系統設計」,水利產業研討會,B137-B144。
27.黃裕君、宋家驥、賴勁松、鄭建華、黃國文、黃文胤(2008),「超音波水庫泥沙濃度量測」,第十屆水下技術研討會暨國科會成果發表會。
28.黃裕君(2008),「超音波懸浮泥沙溶液濃度及流速量測:以高嶺土及水庫土樣為實驗驗證之研究」,國立台灣大學工程科學及海洋工程研究所博士論文。
29.宋家驥、黃裕君、賴進松、黃國文、鄭建華、譚義績(2009),「超音波懸浮泥沙溶液濃度及流速量測」,應用聲學與振動學刊,Vol.1 No.1,第11-17頁。
30.黃鈺軒(2009),「凝聚性沙質在水體沉降過程之研究」,國立成功大學水利及海洋工程研究所碩士論文。
31.黃文胤(2009),「超音波泥沙濃度量測系統設計開發及應用冪次法於多種粒徑泥沙溶液濃度量測與率定」,國立台灣大學工程科學及海洋工程研究所碩士論文。