| 研究生: |
陳仁禮 Chen, Ren-Li |
|---|---|
| 論文名稱: |
十位元1GHz 電流導向式數位類比轉換器 A 10-bit 1GSample/s Current Steering Digital-to-Analog Converter |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 數位類比轉換器 |
| 外文關鍵詞: | DAC |
| 相關次數: | 點閱:37 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,主要實現一個可操作在1GHz十位元的電流導向式數位類比轉換器,並且探討它的設計分法及設計時所需要注意的地方。這個設計使用台積電(TSMC) 1P6M 0.18m CMOS數位製程來實現。在此架構中,其中最大的6個數位碼轉成溫度碼,最小位元的4個碼使用二進位碼。為了更容易和數位系統整合,在此電路架構中的類比電路的電源電壓為與數位電路相同的1.8V.。我們也使用管線 (Pipeline) 式架構來設計數位解碼器以符合高速度操作的需求。同時,為了達到所需要的靜態和動態特性,我門使用了很多技巧,例如:電流源電晶體滿足靜態線性的需求,電流源電晶體開關的切換計畫,電路佈局的最佳化,防止電源線互相耦合的技巧等,去改善電路效能。
當電路操作在500MHz的頻率,輸入旋波訊號在200MHz時,電路的無雜訊動態範圍(SFDR)可達到62dB;當電路操作頻率達到1G時,輸入旋波訊號達到100MHz時,電路的 SFDR可達到至少55dB的要求。電路的靜態特性也有不錯的表現,其中最具代表性的差分非線性誤差(DNL)和積分非線性誤差(INL),分別小於0.1LSB和0.15LSB。當電路操作在1GHz的頻率,輸入旋波訊號為100MHz,電路只消耗35mW的功率,整個晶片核心的面積只有0.5mm2,整體晶片面積為1.21mm2。
In this thesis, a 10-bit 1-GSample/s segmented digital-to-analog converter is proposed. It is implemented in TSMC standard 0.18m 1P6M CMOS technology. The segmented architecture of this current steering DAC consists of 6bit MSB that is constructed by thermometer code structure and 4bit LSB that is binary weighted one. To be easier intergraded in the digital system, the power supply in the analog part is designed in1.8V. To achieve high speed, we use pipeline architecture in the thermometer decoder to alleviate their speed requirement. To improve static and dynamic specifications, many issues, such as INL yield requirement, switching scheme, layout optimization and power lines decoupling, in designing this DAC are taken care of.
For a 500MHz update rate, the SFDR is 62dB at 200MHz signal frequency. When the update rate reaches to 1GHz, the SFDR is 55dB at 100 MHz signal frequency. The DNL is less than 0.1 LSB, and the INL is less than 0.15 LSB. The power consumption is 35mw at a 100MHz input signal with 1GHz update rate. The active area is 0.5mm2 and the total area is 1.21mm2.
[1]T. Miki et al., “An 80MHz 8-bit CMOS D/A converter,” IEEE J. Solid-State
Circuits, vol. 21, pp. 983-988, Dec. 1986.
[2]D. Wouter J. Groeneveld, H. J. Schouwenaars, H. A. H. Termeer, and C. A. A.
Bastiaansen, “A Self-Calibration Technique for Monolithic High-Resolution
D/A Converters,” IEEE J. Solid State Circuits, vol. 24, pp. 1517-1522,
Dec. 1989.
[3]Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, “A 10-b 70-MS/s
CMOS D/A Converter,” IEEE J. Solid State Circuits, vol. 26, pp. 637-642,
April 1991.
[4]H. Kohno, Y. Nakamura et al., “A 350-MS/s 3.3-V 8-bit CMOS D/A converter
using a delayed driving scheme,” in Proc. IEEE 1995 Custom Integrated
Circuits Conf. (CICC), May 1995, pp. 10.5.1-10.5.4.
[5]C. H. Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6mm2,” IEEE
J. Solid-State Circuits, vol. 33, pp. 1948-1958, Dec. 1998.
[6]J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 12-bit
intrinsic accuracy high-speed CMOS DAC,” IEEE J. Solid-State Circuits,
vol. 33, pp. 1959-1969, Dec. 1998.
[7]G. A. M. Van der Plas, J. Vandenbussche, W. Sansen, “A 14-bit intrinsic
accuracy Q2 random walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34,
pp. 1708-1718, Dec.1999.
[8]A. R. Bugeja, B. S. Song, P. L. Rakers, and S. F. Gillig, “A 14-b, 100
-MS/s CMOS DAC Designed for Spectral Performance,” IEEE, J. Solid State
Circuits, vol. 34, pp 1719-1732, Dec. 1999.
[9]A. R. Bugeja, and B. S. Song, “A Self-Trimming 14-b 100-MS/s CMOS DAC,”
IEEE J. Solid-State circuits, vol. 35, pp. 1841-1852, Dec. 2000.
[10]A. Van den Bosch, M. A. F. Borremans, M. S. J. Steyaert, W. Sansen, “A 10
-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter,” IEEE J.
Solid-State Circuits, vol. 36, pp. 315-324, Mar. 2001.
[11]M. P. Tiilikainen, “A 14-bit 1.8-V 20-mW 1-mm2 CMOS DAC,” IEEE J. Solid
State Circuits, vol. 36, pp. 1144-1147, July 2001.
[12]J. Bastos, M. Steyaert, and W. Sansen, “A high yield 12-bit 250-MS/s CMOS
D/A converter,” in Proc. IEEE 1996 CICC, May 1996, pp. 431-434.
[13]A. Van den Bosch, M. Borremans et al., “A 12-bit 200-MHz low glitch CMOS
D/A converter,” in IEEE 1998 Custom Integrated Circuits Conf. (CICC), May
1998, pp. 249-252.
[14]B. Razavi, Principles of Data Conversion System Design, New York: IEEE
Press, 1995.
[15]M. Burns, and G. W. Roberts, An Introduction to Mixed-Signal IC Test and
Measurement, Oxford, 2001.
[16]D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York:
Wiley, 1997.
[17]K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copland, “Characterization
and modeling of mismatch in MOS transistors for precision analog design,”
IEEE J. Solid-State Circuits, vol. SC-21, pp. 1057-1066, Dec 1986.
[18]M. J. M. Pelgrom, A. C. J. Duinmaiher, A. P. G. Welbers, “Matching
properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24,
pp.1433-1440, Oct. 1989.
[19]A. Cremonesi, F. Maloberti, and G. Polito, “A 100-MHz CMOS DAC for video
-graphic systems,” IEEE J. Solid-State Circuits, vol. 24, no. 3, pp. 635
-639, June 1989.
[20]K. O’Sullivan, C. Gorman, M. Hennessy, and V. Callaghan, “A 12-bit 320
-MSample/s Current-Steering CMOS D/A Converter in 0.44 mm2,” IEEE J.
Solid-State Circuits, vol. 39, pp. 1064-1072, July 2004.
[21]A. Van den Bosch, M. Steyaert, and W. Sansen, “SFDR-bandwidth limitations
for high-speed high-resolution current-steering CMOS D/A converters,” in
Proc. IEEE Int. Conf. Electronics, Circuits and Systems (ICECS), Sept.
1999, pp. 1193-1196.
[22]J. Bastos, M. Steyaert, B. Graindourze, and W. Sansen, “Matching of MOS
Transistors with Different Layout Styles,” IEEE International Conference
on Microelectronic Test Structures, vol. 9, March 1996, pp. 17-18.
[23]B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw
-Hill, 2001.
[24]M. Gustavsson, J.Jacob Wikner, and Nianxiong Nick Yan, CMOS Data
Converters for Communication, Dordrecht, Germany: Kluwer, 2000.
[25]K. Doris, “High-speed D/A Converters: from Analysis and Synthesis
Concepts to IC Implementation,” Ph.D. dissertation, TUE Technische
Universiteit Eindhoven, September 2004.
[26]C. Bastiaansen, D. Groeneveld, H. Schouwenaars, and H. Termeer, “A 10-b
40-MHz 0.8-m CMOS current-output D/A converter,” IEEE J. Solid-State
Circuits, vol. 26, pp. 917-921, July 1991.
[27]J. Fournier and P. Senn, “A 130 MHz 8-bit CMOS video DAC for HDTV
applications,” IEEE J. Solid-State Circuits, vol. 26 no. 7, pp. 1073
-1077, July 1991.
[28]D. Mercer, “A 16-b D/A Converter with increased spurious free dynamic
range, ” IEEE J. Solid-State Circuits, vol. 29, no. 10, pp. 1180-1181,
Oct. 1994.
[29]A. Van den Bosch, M. Steyaert, and W. Sansen, “An accurate statistical
yield model for CMOS current-steering D/A converters,” in Proc. IEEE Int.
Symp. Circuits and Systems (ISCAS), May 2000, pp. IV.105–IV.108.
[30]Jan M.Rabaey, A. Chandrkasan, B. Nikolic, Digital Integrated Circuits: a
Design Perspective, Eaglewood Cliffs, NJ: Prentice Hall, 2003.
[31]Yi-Lin Lee, ‘’A 10-bit 200Mhz digital-to-analog converter with dual
voltage/current mode,” Master’s thesis, National Cheng-Kung University,
Tainan City, Taiwan, Republic of China, July 2003.
[32]A. Van den Bosch et al., “A 12b 500MSample/s current steering CMOS D/A
converter,” in IEEE Int. Solid-State Circuits Dig. Tech. Papers, Feb.
2001, pp. 366–367.
[33]J. Deveugele et al., “A 10b 250MS/s binary-weighted current steering
DAC,” in IEEE Int. Solid-State Circuits Dig. Tech. Papers, Feb. 2004,
pp.362 – 532.
[34]B. Schafferer et al., “A 3V CMOS 400mW 14b 1.4G/s DAC for multi-carrier
application,” in IEEE Int. Solid-State Circuits Dig. Tech. Papers, Feb.
2004 Page(s):360 - 532 Vol.1