簡易檢索 / 詳目顯示

研究生: 林俊仁
Lin, Jun-Ren
論文名稱: 一個新的數位再設計錯誤容忍追蹤器在線性多輸入多輸出取樣資料系統的應用
A New Digital Redesign-Based Fault Tolerant Tracker for the Linear MIMO Sampled-Data System
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 56
中文關鍵詞: 混沌進化計算論錯誤容忍追蹤器數位再設計
外文關鍵詞: fault tolerant tracker, chaos-evolutionary-programming algorithm, Digital redesign
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文提出一個新的數位再設計錯誤容忍追蹤器在線性多輸入多輸出取樣資料系統的應用。這個錯誤容忍追蹤器不僅在正常的情況下可以穩定一個給定的系統且當感測器中的一個或致動器中的一個有某種程度的錯誤時,亦會使系統穩定。為了改善錯誤容忍追蹤器的性能,提出線性二次式調整設計。根據線性二次式調整設計,控制器的參數和受控廠的極點被最佳化地調整。數位再設計技術被用來離散化這個理論上設計良好的類比錯誤容忍追蹤器,因此具有錯誤容忍控制器的數位再設計閉迴路取樣資料系統的狀態近似於類比的狀態。為了更進一步改善錯誤容忍追蹤器的性能,混沌進化計算論被用來調整追蹤器。模擬的結果顯示出追蹤器的性能是好且有效。

    Abstract
    A new digital redesign-based fault tolerant tracker for the linear MIMO sampled-data system is proposed in this paper. The fault tolerant tracker can stabilize a given system not only in the nominal situation but also when one of the sensors or one of the actuators has a certain degree fault. In order to improve the performance of the fault tolerant tracker, the linear-quadratic-regulator (LQR) design is developed. Based on the LQR design, the parameters of the controller as well as the poles of the plant are optimally tuned up. A digital redesign technique is developed to discretize the theoretically well-developed analogue fault tolerant tracker, such that the states of the digitally redesigned closed-loop sampled-data system with the fault tolerant controller are close to analogue ones. In order to further improve the performance of the fault tolerant tracker, the chaos-evolutionary-programming algorithm is utilized for tuning the tracker. Simulation results show the tracking performance is good and effective.

    中文摘要           I Abstract           II Contents           III List of Figures       IV List of Table         V Chapter 1 Introduction 1.1 Introduction          1-1 1.2 Organization of the thesis    1-2 2 A Fault Tolerant Controller 2-1  2.1 Problem formulation     2-2  2.2 Preliminaries        2-2  2.3 A fault tolerant compensator 2-5  2.4 An illustrative example    2-11 3 Tuning of the Pre-designed Analogue Controller Using State-feedback LQR Method and Digital Redesign of Analogue Tracker with Chaos Evolutionary Programming        3-1  3.1 Introduction          3-2  3.2 Problem formulation       3-3  3.3 Tuning of the analogue controller via state-feedback LQR approach   3-4  3.4 The tuning adaptive tracker using the chaos-evolutionary-programming approach  3-8   3.4.1 The Chaos systems        3-8   3.4.2 The estimating range of searching parameter 3-9   3.4.3 A chaos evolutionary programming approach            3-11  3.5 Digital redesign          3-16  3.6 An illustrative example       3-19 4 Conclusions               4-1 References Acknowledgements

    [1] H. Niemann and J. Stoustrup, “Reliable control using the primary and dual Youla parameterizations,” in Proc. 41st IEEE Conference Decision Control, Las Vegas, NV, pp. 4353-4358, 2002.
    [2] A. Alos, “Stabilization of a class of plants with possible loss of outputs or actuator failures,” IEEE Transaction Automat. Control, vol. AC-28, pp. 231-233, Feb. 1983.
    [3] J. Lunze and J. Schroder, “Sensor and actuator fault diagnosis of systems with discrete inputs and outputs,” IEEE Transaction on Systems, Man, and Cybernetics, vol. 34, no. 2, pp. 1096-1107, April 2004.
    [4] D. L. Yu, T. K. Chang, and D. W. Yu, “Fault tolerant control of multivariable processes using auto-tuning PID controller,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 35, no. 1, pp. 32-43, Feb. 2005.
    [5] X. Zhang, T. Parisini, and M. M. Polycarpou, “Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach,” IEEE Transactions on Automatic Control, vol. 49, no. 8, pp. 1259-1274, 2004.
    [6] J. Jiang and Y. Zhang, “Accepting performance degradation in fault-tolerant control system design,” IEEE Transaction on Control Systems Technology, vol. 14, no. 2, pp. 284-292, March 2006.
    [7] J. Stoustrup and H. Niemann, “Fault tolerant control for unstable systems: a linear time varying approach,” American Control Conference Boston Massachusetts, pp. 1794-1798, June 2004.
    [8] J. Stoustrup and V. D. Blondel, “Fault tolerant control: a simultaneous stabilization result,” IEEE Transactions on Automatic Control, vol. 49, no. 2, pp. 305-310, 2004.
    [9] K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control, Upper Saddle River, NJ: Prentice-Hall, 1987.
    [10] L. S. Shieh, H. M. Dib, and B. C. Mcinnis, “Linear quadratic regulators with eigenvalue placement in a vertical strip,” IEEE Transactions on Automatic Control, vol. AC-31, pp. 241-243, March 1986.
    [11] Y. Zhang, L. S. Shieh, and C. R. Liu “Digital PID controller design for multivariable analogue systems with computational input-delay,” IMA Journal of Mathematical Control and Information, pp. 443-456, 2004.
    [12] K. Lu, J. H. Sun, R. B. Ou, and L. Y. Huang., Chaos dynamics, Shanghan: shanghai Translation Press Company, 1990.
    [13] S. M. Guo, K. T. Liu, J. S. H. Tsai, and L. S. Shieh., “An observer-based tracker for hybrid interval chaotic systems with saturating inputs: the chaos-evolutionary-programming approach,” Computers and Mathematics with Applications.
    [14] S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin, “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transaction on Circuits and Systems–I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.

    下載圖示 校內:立即公開
    校外:2006-06-26公開
    QR CODE