| 研究生: |
朱振忠 Ju, Cheng-Chun |
|---|---|
| 論文名稱: |
利用酪胺酸與改質酪胺酸形成之新型界面活性劑控制金奈米粒子的型態與大小 Shape and Size-Controlled of Gold Nanoparticles by L-Tyrosine and L-Tyrosine-Based Novel Surfactant |
| 指導教授: |
詹正雄
Jan, Cheng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 金奈米粒子 、奈米金殼 、金奈米線 、界面活性劑 、酪胺酸 |
| 外文關鍵詞: | gold nanoparticles, gold nanoshells, gold nanowires, surfactant, tyrosine |
| 相關次數: | 點閱:106 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇研究中我們藉由控制還原劑與四氯金酸的濃度比與四氯金酸濃度達到控制金奈米粒子的型態的目的。在第一部分的研究中,我們利用胺基酸L-tyrosine同時作為還原劑與保護劑合成金奈米球與金奈米線兩種結構,反應過程中不需要再添加其他的反應物,從實驗結果發現在濃度比R([LY]/[HAuCl4])≧0.2得到的金奈米結構為球狀的金奈米球,並且可以藉由改變濃度比R與四氯金酸濃度控制金奈米球的平均粒徑大小,粒徑分佈從9 nm到30 nm的金奈米球皆可合成,且具有單一粒徑分佈;然而,當濃度比R([LY]/[HAuCl4])≦0.05則可以得到金奈米線或網絡的結構,得到的金奈米線的具有相當小的線寬大約介於7-11 nm之間,且增加四氯金酸濃度有助於使金奈米線的線寬較為連續。金奈米線形成的主要原因是由於溶液中存在的L-tyrosine不足以將金奈米球的表面完全保護住而形成許多不穩定的金奈米球,四氯金酸離子以非離子態吸附在裸露的金粒子表面,增加粒子之間的凡得瓦力,少量L-tyrosine提供有限的靜電排斥力,導致1-D與2-D的金奈米結構形成,最後得到的線狀結構表面受到L-tyrosine的保護相當穩定,可以在沒有四氯金酸離子的環境下穩定存在半年以上。
第二部分的研究是將L-tyrosine的胺基改質上一個長碳鏈(C18)形成新型的界面活性劑(LYSA),以LYSA同時作為還原劑、保護劑與軟性模板(soft template)合成金奈米粒子,同樣藉由改變濃度比R([LYSA]/[HAuCl4])與四氯金酸濃度進行金奈米粒子型態與大小的控制,從實驗結果發現新型的界面活性劑LYSA在鹼性的環境下會自組裝成管裝的結構,金奈米粒子以LYSA自組裝的管狀結構為模板(template)形成管狀與球狀奈米金殼的結構。由於四氯金酸與LYSA螯合造成自組裝結構轉變而形成不同型態的奈米金殼,較高的濃度比R與較低的四氯金酸濃度,四氯金酸會先與LYSA自組裝結構外層表面螯合,使自組裝結構的曲率大大降低,然而隨著濃度比R的減少或四氯金酸濃度的增加,可以擴散到LYSA自組裝內部的四氯金酸量越來越多,螯合在LYSA自組裝內層表面的四氯金酸也越來越多,因此,自組裝結構曲率也隨之變大,甚至當四氯金酸濃度到達一定程度之後,內層與外層螯合四氯金酸的程度差不多時,自組裝的結構依然維持管狀結構。另外,從實驗結果也能發現,組成球狀奈米金殼與管狀奈米金殼的金奈米粒子的型態也有所不同,球狀奈米金殼主要由2-D的網狀金奈米結構形成,而管狀奈米金殼則是由獨立的金奈米粒子聚集而成,且粒徑分佈呈現雙粒徑分佈,第一個粒徑分佈為窄分佈約在10 nm,第二個粒徑分佈為寬分佈介於30-90 nm之間。文獻上利用軟性模板合成奈米金殼相當少見,本實驗提供一個簡單、低成本且少製程的合成奈米金殼的方法,且藉由控制濃度比R([LYSA]/[HAuCl4])與四氯金酸濃度可以控制奈米金殼的型態及組成金殼的奈米粒子型態。
我們藉由核磁共振光譜儀(1H NMR)、表面張力計和高解析場發射掃描式電子顯微鏡(HR-SEM),鑑定以tyrosine為基礎改質完的界面活性劑的純度與結構,和在溶液中的自組裝結構,並利用可見光光譜儀(UV-vis)、穿透式電子顯微鏡(TEM)和電子力顯微鏡(AFM)確認金奈米結構的型態及對光的各波長吸收特性,並研究在長晶過程中的動力學。
In this study, we controlled the shape and size of gold nanoparticles by varying concentration ratio([reductant]/[HAuCl4]) and [HAuCl4]. In the first section, L-tyrosine(LY) system, the L-tyrosine which used to synthesize nanospheres and nanowires acted both as reducing and capping agent without additional reagent. When the concentration ratio R([LY]/[HAuCl4])≧0.2, spherical gold nanoparticles were obtained and the average diameter could be controlled from 9 to 16 nm under varying reaction conditions of concentration ratio R and [HAuCl4]. When the concentration ratio R([LY]/[HAuCl4])≦0.1, gold nanowires and network-like structures were obtained as thin as 7 nm to 11 nm. Increasing of [HAuCl4] would result in the flatter wire-like structures. The major reason for the forming of gold nanowires and network-like structure is that insurfficient L-tyrosine capped on the surface of gold naoparticles which result unstable nanoparticles. The excess chloroaurate ions would absorb on the exposed surface of nanoparticles in uncharged state, AuCl3 resulted in increasing of Van der Waals force between particles and decreasing of repulsive force. Then gold nanoparticles sintered in the direction of exposed surface. The forming gold nanowires and network-like structures capped by L-tyrosine completely showed excellent stability and well-dispersed in basic solution without existensce of AuCl4- for six month.
In the second section, LYSA system, the novel surfactant, LYSA, was synthesized through an amide reaction. The LYSA acted as reducing, capping, chelating agent and soft-template during the preparation of nanogold. The shape and size of nanogold were controlled by varying reaction conditions of concentration ratio R([LYSA]/[HAuCl4]) and [HAuCl4]. The surfactant LYSA which self-assembled into tubular structure as a soft-template in basic aqueous solution chelated with gold ions which resulted in the transformation of LYSA self-assembled structure and further induced oxidation of gold ions in situ. The different shape of gold nanoshells were formed and consisted of nanogold. At higher concentration ratio R and low [HAuCl4], the amount of chloroaurate ions chelated with the outer surface of LYSA self-assembled structures was larger than inner surface due to the small driving force and loose arrangement. The difference of chelated gold ions lead to the self-assembled structure transform into smaller curvature structure, such as small vesicles. However, because of the decreasing of concentration ratio R and the increasing of [HAuCl4], the amount of gold ions which diffused into inside and chelated with the inner surface of self-assemble structure increased which lead to large vesicles. When the amount of chelated gold ions between outer and inner surface of self-assembled structure were almost the same, the self-assembled structure would still maintain the tubular structure. From the TEM images, different shape of gold nanoshells consisted different morphology of nanogold. For example, the spherical nanoshells consisted of 1-D or 2-D nanogold, but the tubular nanoshells consisted of isolated nanoparticles with two kinds of size distribution. The first narrow distribution was located at 10 nm, and the second broad distribution ranged from 30 nm to 90 nm. Gold nanoshells synthesized by soft-template method were reported in few studies. In this study, a method used to synthesize gold nanoshells through a simple, low-cost, few-step and morphology transformation process was reported. The shape and size of nanoshells could be controlled by varying reaction condition of concentration ratio R([LYSA]/[HAuCl4]) and [HAuCl4].
The gold nanocrystals and novel L-tyrosine-based surfactants were characterized by nuclear magnetic resonance spectroscopy (1H NMR), surface tension meter, UV-vis spectroscopy, high resolution field emission scanning electron microscope (HR-SEM), atom force microscopy (AFM) and transmission electron microscopy (TEM).
1. J. D. Aiken and R. G. Finke, J. Mol. Catal. A-Chem., 1999, 145, 1-44.
2. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B, 2003, 107, 668-677.
3. C. A. Mirkin, Inorg. Chem., 2000, 39, 2258-2272.
4. K. R. Brown, D. G. Walter and M. J. Natan, Chemistry of Materials, 2000, 12, 306-313.
5. S. L. Goodman, G. M. Hodges, L. K. Trejdosiewicz and D. C. Livingston, Journal of Microscopy, 1981, 123, 201-213.
6. W. P. Faulk and G. M. Taylorb, Immunochemistry, 1971, 8, 1081-1083.
7. M. A. Hayat, Colloidal Gold. Principles, Methods and Application., London: Academic Press., San Diago, 1989.
8. J. E. Beesley, Colloidal Gold: A New Perspective for Cytochemical Marketing, Oxford University, Oxford, 1989.
9. C. D. Chen, Y. T. Yeh and C. R. C. Wang, Journal of Physics and Chemistry of Solids, 2001, 62, 1587-1597.
10. B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen and Y. Xia, The Journal of Physical Chemistry B, 2006, 110, 15666-15675.
11. Y. Xia, Y. J. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem.-Int. Edit., 2009, 48, 60-103.
12. Y. Yonezawa, T. Sato, S. Kuroda and K. Kuge, J. Chem. Soc.-Faraday Trans., 1991, 87, 1905-1910.
13. M. Y. Han and C. H. Quek, Langmuir, 2000, 16, 362-367.
14. M. T. Reetz, W. Helbig and S. A. Quaiser, Chemistry of Materials,
93
1995, 7, 2227-2228.
15. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai and C. R. C. Wang, Langmuir, 1999, 15, 701-709.
16. M. T. Reetz and W. Helbig, J. Am. Chem. Soc., 1994, 116, 7401-7402.
17. K. Okitsu, H. Bandow, Y. Maeda and Y. Nagata, Chemistry of Materials, 1996, 8, 315-&.
18. S. Link, Z. L. Wang and M. A. EI-Sayed, J. Phys. Chem. B, 1999, 103, 3529.
19. J. Turkevich and G. Kim, Science, 1970, 169, 873.
20. N. Toshima, M. Harada, Y. Yamazaki and K. Asakura, Journal of Physical Chemistry 1992, 996, 9927.
21. C. Sangregorio, M. Galeotti, U. Bardi and P. Baglioni, Langmuir, 1996, 12, 5800-5802.
22. A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell and V. M. Rotello, Nature, 2000, 404, 746-748.
23. X. H. Li, Y. C. Li, Y. W. Tan, C. H. Yang and Y. F. Li, J. Phys. Chem. B, 2004, 108, 5192-5199.
24. A. G. Kanaras, F. S. Kamounah, K. Schaumburg, C. J. Kiely and M. Brust, Chem. Commun., 2002, 2294-2295.
25. A. H. Latham and M. E. Williams, Langmuir, 2006, 22, 4319-4326.
26. L. O. Brown and J. E. Hutchison, J. Am. Chem. Soc., 1997, 119, 12384-12385.
27. S. Biggs, P. Mulvaney, C. F. Zukoski and F. Grieser, J. Am. Chem. Soc., 1994, 116, 9150-9157.
28. J. S. Spendelow and A. Wieckowski, Physical Chemistry Chemical Physics, 2004, 6, 5094-5118.
29. A. M. Joshi, M. H. Tucker, W. N. Delgass and K. T. Thomson,
94
Journal of Chemical Physics, 2006, 125, 11.
30. G. Schmid, ed., Clusters and Colloids : From Theory to Applications, VCH, New York, 1994.
31. V. K. LaMer and R. H. Dinegar, J. Am. Chem. Soc., 1950, 72, 4847-4854.
32. J. Turkevich, P. C. Stevenson and J. Hillier, The Journal of Physical Chemistry, 1953, 57, 670-673.
33. J. Turkevich, P. C. Stevenson and J. Hillier, Discussions of the Faraday Society 1951, 11, 55-75.
34. T. Laaksonen, P. Ahonen, C. Johans and K. Kontturi, Chemphyschem, 2006, 7, 2143-2149.
35. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman, Journal of the Chemical Society Chemical Communications 1994, 801 - 802.
36. N. R. Jana, L. Gearheart and C. J. Murphy, Chemistry of Materials, 2001, 13, 2313-2322.
37. Y. J. Xiong and Y. N. Xia, Adv. Mater., 2007, 19, 3385-3391.
38. D. Beischer and F. Krause, Naturwissenschaften, 1937, 25, 825-829.
39. S. Porel, S. Singh and T. P. Radhakrishnan, Chem. Commun., 2005, 2387-2389.
40. C. S. Ah, Y. J. Yun, H. J. Park, W. J. Kim, D. H. Ha and W. S. Yun, Chemistry of Materials, 2005, 17, 5558-5561.
41. S. H. Chen and D. L. Carroll, J. Phys. Chem. B, 2004, 108, 5500-5506.
42. S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad and M. Sastry, Nat. Mater., 2004, 3, 482-488.
43. F. Gonzaga, S. Singh and M. A. Brook, Small, 2008, 4, 1390-1398.
95
44. J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz and C. A. Mirkin, J. Am. Chem. Soc., 2005, 127, 5312-5313.
45. H. Z. Huang and X. R. Yang, Colloid Surf. A-Physicochem. Eng. Asp., 2005, 255, 11-17.
46. B. Liu, J. Xie, J. Y. Lee, Y. P. Ting and J. P. Chen, J. Phys. Chem. B, 2005, 109, 15256-15263.
47. C. Lofton and W. Sigmund, Adv. Funct. Mater., 2005, 15, 1197-1208.
48. H. C. Chu, C. H. Kuo and M. H. Huang, Inorg. Chem., 2006, 45, 808-813.
49. C. X. Kan, X. G. Zhu and G. H. Wang, J. Phys. Chem. B, 2006, 110, 4651-4656.
50. Y. Shao, Y. D. Jin and S. J. Dong, Chem. Commun., 2004, 1104-1105.
51. S. H. Chen, Z. Y. Fan and D. L. Carroll, J. Phys. Chem. B, 2002, 106, 10777-10781.
52. R. Jin, Y. Charles Cao, E. Hao, G. S. Metraux, G. C. Schatz and C. A. Mirkin, Nature, 2003, 425, 487-490.
53. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. Zhang, Science, 2001, 294, 1901-1903.
54. Y. Y. Yu, S. S. Chang, C. L. Lee and C. R. C. Wang, J. Phys. Chem. B, 1997, 101, 6661-6664.
55. J. Perez-Juste, L. M. Liz-Marzan, S. Carnie, D. Y. C. Chan and P. Mulvaney, Adv. Funct. Mater., 2004, 14, 571-579.
56. N. R. Jana, L. Gearheart and C. J. Murphy, The Journal of Physical Chemistry B, 2001, 105, 4065-4067.
57. J. Gao, C. M. Bender and C. J. Murphy, Langmuir, 2003, 19, 9065-9070.
96
58. B. Nikoobakht and M. A. El-Sayed, Chemistry of Materials, 2003, 15, 1957-1962.
59. A. Gole and C. J. Murphy, Chemistry of Materials, 2004, 16, 3633-3640.
60. D. K. Smith and B. A. Korgel, Langmuir, 2008, 24, 644-649.
61. P. Zijlstra, C. Bullen, J. W. M. Chon and M. Gu, The Journal of Physical Chemistry B, 2006, 110, 19315-19318.
62. T. K. Sau and C. J. Murphy, Langmuir, 2004, 20, 6414-6420.
63. L. H. Pei, K. Mori and M. Adachi, Langmuir, 2004, 20, 7837-7843.
64. B. K. Pong, H. I. Elim, J. X. Chong, W. Ji, B. L. Trout and J. Y. Lee, J. Phys. Chem. C, 2007, 111, 6281-6287.
65. X. H. Ji, X. N. Song, J. Li, Y. B. Bai, W. S. Yang and X. G. Peng, J. Am. Chem. Soc., 2007, 129, 13939-13948.
66. J. F. Wall, F. Grieser and C. F. Zukoski, J. Chem. Soc.-Faraday Trans., 1997, 93, 4017-4020.
67. X. W. Lou, L. A. Archer and Z. C. Yang, Adv. Mater., 2008, 20, 3987-4019.
68. A. Imhof, Langmuir, 2001, 17, 3579-3585.
69. L. M. LizMarzan, M. Giersig and P. Mulvaney, Langmuir, 1996, 12, 4329-4335.
70. X. W. Lou, C. L. Yuan and L. A. Archer, Small, 2007, 3, 261-265.
71. S. W. Kim, M. Kim, W. Y. Lee and T. Hyeon, J. Am. Chem. Soc., 2002, 124, 7642-7643.
72. X. M. Sun and Y. D. Li, Angew. Chem.-Int. Edit., 2004, 43, 3827-3831.
73. Z. J. Liang, A. Susha and F. Caruso, Chemistry of Materials, 2003, 15, 3176-3183.
74. C. Graf and A. van Blaaderen, Langmuir, 2002, 18, 524-534.
97
75. C. E. Fowler, D. Khushalani and S. Mann, J. Mater. Chem., 2001, 11, 1968-1971.
76. C. I. Zoldesi and A. Imhof, Adv. Mater., 2005, 17, 924-+.
77. V. S. Murthy, J. N. Cha, G. D. Stucky and M. S. Wong, J. Am. Chem. Soc., 2004, 126, 5292-5299.
78. R. K. Rana, Y. Mastai and A. Gedanken, Adv. Mater., 2002, 14, 1414-1418.
79. C. E. Fowler, D. Khushalani and S. Mann, Chem. Commun., 2001, 2028-2029.
80. W. J. Li, X. X. Sha, W. J. Dong and Z. C. Wang, Chem. Commun., 2002, 2434-2435.
81. S. S. Kim, W. Z. Zhang and T. J. Pinnavaia, Science, 1998, 282, 1302-1305.
82. D. H. W. Hubert, M. Jung, P. M. Frederik, P. H. H. Bomans, J. Meuldijk and A. L. German, Adv. Mater., 2000, 12, 1286-+.
83. D. H. W. Hubert, M. Jung and A. L. German, Adv. Mater., 2000, 12, 1291-+.
84. M. S. Wong, J. N. Cha, K. S. Choi, T. J. Deming and G. D. Stucky, Nano Letters, 2002, 2, 583-587.
85. E. Prouzet, F. Cot, C. Boissiere, P. J. Kooyman and A. Larbot, J. Mater. Chem., 2002, 12, 1553-1556.
86. C. Z. Wu, Y. Xie, L. Y. Lei, S. Q. Hu and C. Z. OuYang, Adv. Mater., 2006, 18, 1727-+.
87. Y. B. Lim, K. S. Moon and M. Lee, J. Mater. Chem., 2008, 18, 2909-2918.
88. M. J. Rosen, Surfactants and Interfacial Phenomena., John Wiley & Sons, Inc., New York, 1989.
89. D. Attwood and A. T. Florence, Surfactants Systems-Their
98
chemistry, pharmacy and biology., Chapman and Hall, New York, 1983.
90. D. J. Shaw, Introduction to colloid and Surface Chemistry., Butterworths, London, 1980.
91. D. H. Solomon and D. G. Hawthrome, Chemistry of Pigments and Fillers., John Wiley & Sons, Inc., New York, 1983.
92. L. N. Vauquelin and P. J. Robiquet, Annales de Chimie 1806, 57, 88-93.
93. W. H. Wollaston, Philosophical Transactions of the Royal Society of London, 1810, 100, 23-30.
94. E. Baumann, Z Physicol Chemie, 1884, 8, 299.
95. H. M. Braconnot, Ann Chim Phys Ser 2, 1820, 13, 13-25.
96. J. D. S. Newman and G. J. Blanchard, Langmuir, 2006, 22, 5882-5887.
97. N. C. Nayak and K. Shin, Journal of Nanoscience and Nanotechnology, 2006, 6, 3512-3516.
98. P. Selvakannan, S. Mandal, S. Phadtare, A. Gole, R. Pasricha, S. D. Adyanthaya and M. Sastry, J. Colloid Interface Sci., 2004, 269, 97-102.
99. S. K. Bhargava, J. M. Booth, S. Agrawal, P. Coloe and G. Kar, Langmuir, 2005, 21, 5949-5956.
100. K. A. Marx, S. Oh and A. P. Angelopoulos, Journal of Macromolecular Science Part a-Pure and Applied Chemistry, 2008, 45, 503-510.
101. P. R. Selvakannan, A. Swami, D. Srisathiyanarayanan, P. S. Shirude, R. Pasricha, A. B. Mandale and M. Sastry, Langmuir, 2004, 20, 7825-7836.
102. Y. N. Tan, J. Y. Lee and D. I. C. Wang, J. Phys. Chem. C, 2008, 112,
99
5463-5470.
103. S. Mandal, P. Selvakannan, S. Phadtare, R. Pasricha and M. Sastry, Proceedings of the Indian Academy of Sciences-Chemical Sciences, 2002, 114, 513-520.
104. P. R. Selvakannan, S. Mandal, S. Phadtare, R. Pasricha and M. Sastry, Langmuir, 2003, 19, 3545-3549.
105. F. X. Zhang, L. Han, L. B. Israel, J. G. Daras, M. M. Maye, N. K. Ly and C. J. Zhong, Analyst, 2002, 127, 462-465.
106. L. Huang, Y. Zhang, Z. R. Guo and N. Gu, Chinese Science Bulletin, 2009, 54, 1626-1629.
107. Z. Khan and A. Talib, Colloids and Surfaces B-Biointerfaces, 2010, 76, 164-169.
108. S. Mandal, A. Gole, N. Lala, R. Gonnade, V. Ganvir and M. Sastry, Langmuir, 2001, 17, 6262-6268.
109. J. Zou, Z. J. Guo, J. A. Parkinson, Y. Chen and P. J. Sadler, Chem. Commun., 1999, 1359-1360.
110. J. Zou, J. A. Parkinson and P. J. Sadler, Journal of the Chinese Chemical Society, 2002, 49, 499-504.
111. H. B. Weiser and W. O. Milligan, The Journal of Physical Chemistry, 1932, 36, 1950-1959.
112. M. K. Chow and C. F. Zukoski, J. Colloid Interface Sci., 1994, 165, 97-109.
113. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar and R. L. Whetten, The Journal of Physical Chemistry B, 1997, 101, 3706-3712.
114. K. Vasilev, T. Zhu, M. Wilms, G. Gillies, I. Lieberwirth, S. Mittler, W. Knoll and M. Kreiter, Langmuir, 2005, 21, 12399-12403.
115. C. J. Kiely, J. Fink, M. Brust, D. Bethell and D. J. Schiffrin, Nature,
100
1998, 396, 444-446.
116. R. Vijay, S. Angayarkanny and G. Bhasker, Colloid Surf. A-Physicochem. Eng. Asp., 2008, 317, 643-649.
117. R. Vijay, J. Singh, G. Baskar and R. Ranganathan, J. Phys. Chem. B, 2009, 113, 13959-13970.
118. K. A. Marx, J. S. Lee and C. M. Sung, Biomacromolecules, 2004, 5, 1869-1876.
119. K. Fukuda, Y. Shibasaki, H. Nakahara and M. H. Liu, Adv. Colloid Interface Sci., 2000, 87, 113-145.
120. S. Si, E. Dinda and T. K. Mandal, Chem.-Eur. J., 2007, 13, 9850-9861.
121. R. Sarma, K. S. Alva, K. A. Marx, S. K. Tripathy, J. A. Akkara and D. L. Kaplan, Mater. Sci. Eng. C-Biomimetic Mater. Sens. Syst., 1996, 4, 189-192.
122. K. A. Marx, K. S. Alva and R. Sarma, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 2000, 11, 155-163.
123. A. Swami, A. Kumar, M. D'Costa, R. Pasricha and M. Sastry, J. Mater. Chem., 2004, 14, 2696-2702.
124. X. Huang, M. W. Cao, J. B. Wang and Y. L. Wang, J. Phys. Chem. B, 2006, 110, 19479-19486.
125. W. Wang, W. S. Lu and L. Jiang, J. Colloid Interface Sci., 2009, 338, 270-275.