| 研究生: |
鄭乃禎 Cheng, Nai-Chen |
|---|---|
| 論文名稱: |
在晶片上低抖動時脈產生器設計 On-Chip Low Jitter Clock Generation |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 鎖相迴路 |
| 外文關鍵詞: | Phase-Locked Loops |
| 相關次數: | 點閱:58 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鎖相迴路被廣泛的應用在晶片上需要精確時間的高性能數位系統上。特別是當操作頻率變快,這些系統的性能會受到時間上的抖動或者是相位的雜訊影響。鎖相迴路中的壓控震盪器容易受到來自供應電壓源的雜訊所影響,而這些雜訊是來自數位電路開關時造成的。
從系統的角度來看,這份研究深入探討鎖相迴路的參數所帶來的影響,例如頻寬以及頻率響應時的平坦度。這份分析考慮了幾個在鎖相迴路中的幾個常見的雜訊來源,並直觀地導出如何選擇最佳的迴路參數以獲得最少的時間抖動。
在電路的角度來看,我們實現了兩種不同架構的壓控震盪器。一個採用較為簡單的電壓轉電流的架構,但使用了雜訊濾除的機制。另外一個壓控震盪器使用自我偏壓的運算放大器以達到較好的線性度以及抗雜訊的能力。我們用自我偏壓的壓控震盪器,以及我們所提出的電流幫浦實現寬頻率範圍的鎖相迴路,並同時對整個鎖相迴路系統進行最佳化。
Phase locked-loops (PLLs) are widely used to generate well-timed on-chip clocks in high-performance digital systems. Any timing jitter or phase noise significantly degrades the performance of these systems, especially as operating frequency increases. Switching activity in large digital systems introduces power supply or substrate noise which perturb the more sensitive blocks in a PLL, especially the voltage-controlled oscillators (VCOs),
At system level, this work investigates the effects of PLL design parameters, such as bandwidth and peaking in frequency response, on timing jitter of PLL output clock. The analysis includes several common noise sources in a PLL and develops an intuition for selection design parameters to obtain minimum output jitter based on the dominant noise source.
At circuit level, two different architectures of VCOs are realized. One employs simple V-I but with noise-canceling techniques. And the other VCO using an operational amplifier, which is self-biased, to maintain good linearity and sensitivity of VCO. The self-biased VCO is used for designing a wide frequency range PLL, with a proposed charge pump. Also, the loop parameters of the PLL are well chosen in the design process.
REFERENCE
[1] J. G.. Maneatis, “Selecting PLLs for ASIC Applications Requires Tradeoffs”.
[2] P. Larsson, “Measurements and Analysis of PLL Jitter Caused by Digital switching Noise,” IEEE Journal of Solid-State Circuits, July 2001.
[3] B.Razavi, Monolithic Phase-Locked Loops and Clock Recovery Circuits. IEEE press, 1996.
[4] H. De Bellescizem, “La Reception Synchrone,” Onde Electr, June 1932.
[5] A. Borys, “Elementary deterministic theories of frequency and amplitude stability in feedback oscillators,” IEEE Trans. Circuits Syst., March,1987.
[6] R. Best, Phase-Locked Loops, Design, Simulation, and Applications, 5th edition, McGraw Hill, 2003.
[7] W. Dally, “Digital Systems Engineering,” Cambridge University press,1998
[8] F. Gardner, “Charge-Pump Phase-Lock Loops,” IEEE Trans. on Communications, November, 1981.
[9] M. Horowitz, and C. K. Ken Yang, “High-Speed Electrical Signaling,” IEEE 1998.
[10] T. A. Riley, et al, “Delta-Sigma Modulation in Fractional-N Frequency Synthesis,” IEEE Journal of Solid-State Circuits, May, 1993.
[11] C. K. Ken Yang, “Delay-Locked Loops –An Overview”.
[12] A. Waizman, “A Delay Line Loop for Frequency Synthesis of De-Skewed Clock,” IEEE ISSCC Dig. of Tech. Papers, Feb. 1994.
[13] G. Franklin, J. Powell, “Feedback Control of Dynamic systems,” Prentice Hall.
[14] S. Ahmed, “Improving the Acquisition Time of A PLL based, Interger N Frequecny Synthesizer,” IEEE ISCAS, 2004.
[15] J.P. Hein and J.W. Scott, “z-Domain model for discrete-time PLL’s,” IEEE Trans. Circuits Syst., Nov.1988.
[16] P. K. Hanumolu, “Analysis of Charge-Pump Phase-Locke Loops,” IEEE Trans. Circuits Syst., Sep.2004.
[17] J. A. Mcneill, “Jitter in ring oscillators,” IEEE Journal of Solid-State Circuits, June 1997.
[18] F. Herzel and B. Razavi, “a Study of Oscillator Jitter Due to Supply and Substrate Noise,” IEEE Trans. Circuits Syst., Jan.1999.
[19] K. Lim, and B. Kim, “A Low-Noise Phase-Locked Loop Design by Loop Bandwidth Optimization,” IEEE Journal of Solid-State Circuits, June 2000.
[20] M. Mansuri and C. K. K. Yang, “Jitter Optimization Based on Phase-Locked Loop Design Parameters,” IEEE Journal of Solid-State Circuits, Nov. 2002.
[21] M. G. Johnson and E. L. Hudson, “A Variable Delay Line PLL for CPU-Coprocessor Synchronization,” IEEE Journal of Solid-State Circuits, Oct.1988.
[22] I. A. Young and J. K. Greason, “A PLL Clock Generator with 5 to 110 MHz of Lock Range for Microprocessors,” IEEE Journal of Solid-State Circuits, Nov. 1992.
[23] I. Novof, et al, “Fully-Integrated CMOS Phase-Locked Loop with 15 to 240Mhz Locking Range and psec Jitter,” IEEE Journal of Solid-State Circuits, Feb.1995.
[24] V. von Kaenel, et al, “A 320 Mhz, 1.5 mW @ 1.35 V CMOS PLL for Microprocessor Clock Generation,” IEEE Journal of Solid-State Circuits, Nov. 1996.
[25] P. Larsson, “A 2-1600 Mhz CMOS Clock Recovery PLL with Low-Vdd Capability,” IEEE Journal of Solid-State Circuits, Dec, 1999.
[26] M. Mansuri and C. K. K. Yang, “A Low-Power Adaptive Bandwidth PLL and Clock Buffer With Supply-Noise Compensation,” IEEE Journal of Solid-State Circuits, Nov. 2003.
[27] S. J Lee and B. Kim, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme,” IEEE Journal of Solid-State Circuits, Feb. 1997.
[28] J. G. Maneatis. Precise Delay Generation Using Coupled Oscillators. Ph.D. dissertation.
[29] J. G. Maneatis, “Low-Jitter Process-Independent DLL and PLL based on Self-Biased Techniques,” IEEE Journal of Solid-State Circuits, Nov. 1996..
[30] B. Razavi, “RF Microelectronics,” Prentice Hall.
[31] W. Rhee, “Design of High-Performance CMOS Charge pumps in PLLs,” IEEE ISCAS, 1999.
[32] T. C. Lee, and B. Razavi , “A Stabilization Technique for Phase-Locked Frequency Synthesizers,” IEEE Journal of Solid-State Circuits, June 2003.
[33] S. Kim, et al, “A 960-Mb/s/pin Interface for Skew-Tolerant Bus Using Low Jitter PLL,” IEEE Journal of Solid-State Circuits, Dec. 1996.
[34] J.Yuan and Svensson C, “High- Speed CMOS Circuit Technique,” IEEE Journal of Solid-State Circuits, February 1989.