簡易檢索 / 詳目顯示

研究生: 蔡承遠
Tsai, Cheng-Yuan
論文名稱: 可變直流鏈電壓調變之永磁同步馬達驅動系統最小化損失研究
Loss Minimization of Variable DC-Link Voltage Modulation in Permanent Magnet Synchronous Motor Drive System
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 140
中文關鍵詞: 雙級式馬達驅動器直流鏈電壓調控高效率操作區間同步PWM控制
外文關鍵詞: Dual-stage motor drive, DC-Link voltage regulation, High efficiency of operating region, Synchronous PWM
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一種基於雙級式永磁馬達驅動架構中,藉由直流鏈電壓可連續調變的特性,以固定調制係數於特定範圍的策略,將系統操作於該工作點之下的最高系統效率,並結合以固定調制係數的方法,在直流鏈電壓達調變最大值時將馬達進行弱磁控制,進一步延伸高速性能。首先在固定脈衝寬度調變的載波頻率情況下分析系統的損失與諧波來源,發現系統損失雖會隨調制係數上升而下降,但當調制係數超過特定點時,電流的偶次諧波成分會上升,使系統損失再次上升,因此存在一調制係數範圍使系統損失呈最小值;經過模擬與實測發現該值在非弱磁區約為0.83~0.85。此外,驅動器損失來源包含脈衝寬度調變的載波頻率,結合馬達參數與脈衝寬度調變之特性,載波頻率選擇上應取兩者交集之值。經過實測驗證不同運轉條件確實存在系統損失最小值之調制係數與載波頻率,提出之方法在非弱磁與弱磁階段皆能使系統穩定運行,能有效擴展雙級式驅動器架構的高速運轉範圍,具備良好實務應用潛力。

    This thesis proposes a strategy for achieving maximum system efficiency in a dual-stage motor drive architecture by utilizing the continuously adjustable characteristic of the DC-Link voltage. The system is operated at a fixed modulation index within a specific range to maintain optimal efficiency at a given operating point. Additionally, when the DC-Link voltage reaches its maximum modulation limit, a field-weakening control is applied to further extend the high-speed performance using the fixed modulation index method. First, under the condition of a fixed PWM carrier frequency, the system’s losses and current harmonics are analyzed. It is observed that the system loss decreases with the modulation index increases, once the index exceeds a certain point, the even-order harmonic components in the current rise, causing the losses to increase. Therefore, there exists a range of modulation indexes that yield minimum system loss. In the constant-torque region, simulation results indicate that the optimal modulation index is approximately 0.83~0.85. Furthermore, the sources of inverter losses include the PWM carrier frequency. Considering both motor parameters and PWM modulation characteristics, the carrier frequency should be chosen based on the intersection of these factors. Experimental results verify that, under different operating conditions, there indeed exists an optimal modulation index and carrier frequency that minimize system losses. The proposed method ensures stable operation in both the constant-torque the field-weakening region, effectively extending the high-speed operating range of the dual-stage motor drive architecture and demonstrating strong potential for practical application.

    摘要 I 目錄 XXV 圖目錄 XXVIII 表目錄 XXXII 符號表 XXXIII 第一章 緒論 1 1.1 研究動機與背景 1 1.2 文獻回顧 2 1.2.1 直流鏈電壓調控技術於馬達驅動的發展 2 1.2.2 高效率直流轉換器 3 1.2.3 雙級式馬達驅動器控制架構 3 1.3 研究目的 5 1.4 論文架構 7 第二章 三相永磁同步馬達驅動系統 9 2.1 永磁同步馬達數學模型 9 2.1.1 三相座標系統之永磁同步馬達數學模型 9 2.1.2 馬達運轉動態模型 11 2.2 座標軸轉換 13 2.2.1 Clarke 轉換 14 2.2.2 Park 轉換 16 2.2.3 d-q軸座標系統中馬達等效電路模型 17 2.3 磁場導向控制 18 2.3.1 控制器設計 19 2.3.2 三相變流器 23 2.4 脈衝寬度調變 24 第三章 諧波成分與系統損失分析 33 3.1 諧波組成 33 3.1.1 由馬達結構造成之空間諧波 34 3.1.2 由驅動器造成之時間諧波 35 3.1.3 調制波造成額外諧波失真問題 36 3.2 系統損失分析 43 3.3 小結 47 第四章 藉由可變直流鏈電壓與可變載波頻率最小化損失與諧波 48 4.1 最佳系統效率與響應之調制係數選擇 48 4.2 弱磁區控制設計 57 4.3 載波頻率選擇 63 4.3.1 模式選擇 63 4.3.2 同步PWM設計 66 第五章 實測結果分析與討論 71 5.1 實驗平台 71 5.2量測結果 76 5.2.1 固定載波頻率下以不同調制係數驅動 77 5.2.2 弱磁階段加入固定調制係數調變 83 5.2.3 載波頻率對於效率影響 86 5.3 小結 92 第六章 結論與未來展望 93 6.1 結論 93 6.2 未來展望 94 參考文獻 95

    [1] Toshiba, "鉄道車両に適したリチウムイオン二次電池 SCiB ™の活用".
    [2] 符玉梅, "空中計程車發展趨勢初探 Preliminary Analysis of Flying Taxi," 2019.
    [3] J. Cao and A. Emadi, "A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles," IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 122-132, Jan. 2012
    [4] T. Schoenen, M. S. Kunter, M. D. Hennen and R. W. De Doncker, "Advantages of a variable DC-Link voltage by using a DC-DC converter in hybrid-electric vehicles," in Proceedings of 2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 2010
    [5] BRUSA, "BCD546," [Online]. Available: https://www.brusahypower. com/wp-content/uploads/2021/03/BRUSA_ Factsheet_BDC546.pdf.
    [6] Z. Yan, J. Zeng, Z. Guo, R. Hu and J. Liu, "A Soft-Switching Bidirectional DC–DC Converter With High Voltage Gain and Low Voltage Stress for Energy Storage Systems," IEEE Transactions on Industrial Electronics, vol. 68, no. 8, pp. 6871-6880, Aug. 2021
    [7] Bo Liu, Maohang Qiu, Lei Jing, Xiaoqing Wang, and Min Chen, "Design of high-performance bidirectional DC/DC converter applied for more electric aircraft", The Journal of Engineering, vol. 2018, no. 13, pp. 520-523, 2018.
    [8] Infineon, "Operation and modeling analysis of a bidirectional CLLC converter," 2024.
    [9] 劉哲瑜, "以直流鏈電壓調控提升內藏型永磁同步馬達之高效率操作區間"國立成功大學電機工程學系碩士論文,2022.
    [10] 吳俊霖, "以模型預測轉矩控制結合直流鏈電壓調控改善內藏型永磁同步馬達轉矩漣波與系統效率"國立成功大學電機工程學系碩士論文,2024.
    [11] T. -S. Li, Y. -H. Yang, C. -A. Cheng and Y. -M. Chen, "A Variable DC-Link Voltage Determination Method for Motor Drives with SiC MOSFETs," in Proceedings of 2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Suita, Japan, 2020, pp. 1-6.
    [12] 楊亦涵, "馬達狀態擴增型全狀態回授之直流匯流排電壓控制" ,國立臺灣大學電機工程學系碩士論文,2021.
    [13] P. Pescetto, A. Sierra-Gonzalez, F. Alvarez-Gonzalez, H. Kapeller, E. Trancho and G. Pellegrino, "Active Control of Variable DC-Link for Maximum Efficiency of Traction Motor Drives," IEEE Transactions on Industry Applications, vol. 59, no. 4, pp. 4120-4129, July-Aug. 2023.
    [14] 吳宗庭, "非正弦反電動勢表面行永磁馬達之轉矩漣波抑制驅動技術",國立成功大學電機工程學系碩士論文,2021.
    [15] 羅聲喨, "永磁同步馬達模型建立與控制",國立中央大學電機工程學系在職專班碩士論文,2014.
    [16] J. Holtz, W. Lotzkat and A. Khambadkone, "On continuous control of PWM inverters in the overmodulation range including the six-step mode," IEEE Transactions on Power Electronics, vol. 8, no. 4, pp. 546-553, 1993.
    [17] D.-C. Lee and G.-M. Lee, "A novel overmodulation technique for space-vector PWM inverters," IEEE Transactions on Power Electronics, vol. 13, no. 6, pp. 1144-1151, 1998.
    [18] F. Lin, S. Zuo, W. Deng and S. Wu, "Modeling and Analysis of Electromagnetic Force, Vibration, and Noise in Permanent-Magnet Synchronous Motor Considering Current Harmonics," IEEE Transactions on Industrial Electronics, vol. 63, no. 12, pp. 7455-7466, Dec. 2016.
    [19] T. Hara et al., "Vibration and Loss Reduction of Permanent Magnet Synchronous Motor Driven by Synchronous PWM Control with Carrier Wave Phase Shifts," in Proceedings of 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 2021, pp. 5136-5141.
    [20] T. Hara, T. Ajima, K. Hoshino and A. Ashida, "Carrier Electromagnetic Vibration of DC Voltage Fluctuation in Permanent-Magnet Synchronous Motor With Distributed Winding," IEEE Transactions on Industry Applications, vol. 56, no. 5, pp. 4623-4631, Sept.-Oct. 2020.
    [21] M. Ma, X. He and B. W. Williams, "Synchronization Analysis of Space-Vector PWM Converters With Distributed Control," IEEE Transactions on Power Electronics, vol. 25, no. 12, pp. 3026-3036, Dec. 2010.
    [22] T. Hara, T. Ajima, Y. Tanabe, M. Watanabe, K. Hoshino and K. Oyama, "Analysis of Vibration and Noise in Permanent Magnet Synchronous Motors With Distributed Winding for the PWM Method," IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 6042-6049, Nov.-Dec. 2018 ".
    [23] Seung-Gi Jeong and Min-Ho Park, "The analysis and compensation of dead-time effects in PWM inverters," IEEE Transactions on Industrial Electronics, vol. 38, no. 2, pp. 108-114, Apr. 1991.
    [24] H. Ma, Y. Lu, K. Zheng and T. Xu, "Research on the Simplified SVPWM for Three-Phase/Switches Y-Type Two-Level Rectifier," IEEE Access, vol. 8, pp. 214310-214321, 2020.
    [25] Y. Miyama, M. Hazeyama, S. Hanioka, N. Watanabe, A. Daikoku and M. Inoue, "PWM Carrier Harmonic Iron Loss Reduction Technique of Permanent-Magnet Motors for Electric Vehicles," IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 2865-2871, July-Aug. 2016.
    [26] C. Cavallaro, A. O. Di Tommaso, R. Miceli, A. Raciti, G. R. Galluzzo and M. Trapanese, "Efficiency enhancement of permanent-magnet synchronous motor drives by online loss minimization approaches," IEEE Transactions on Industrial Electronics, vol. 52, no. 4, pp. 1153-1160, Aug. 2005.
    [27] A. Acquaviva, A. Rodionov, A. Kersten, T. Thiringer and Y. Liu, "Analytical Conduction Loss Calculation of a MOSFET Three-Phase Inverter Accounting for the Reverse Conduction and the Blanking Time," IEEE Transactions on Industrial Electronics, vol. 68, no. 8, pp. 6682-6691, Aug. 2021.
    [28] Emma Grunditz, "Design and Assessment of Battery Electric Vehicle Powertrain, with Respect to Performance, Energy Consumption and Electric Motor Thermal Capability".
    [29] Ryu, J.-H.; Lee, J.-H.; Lee, J.-S. Switching Frequency Determination of SiC-Inverter for High Efficiency Propulsion System of Railway Vehicle. Energies 2020.
    [30] P. Poolphaka, S. Chaithongsuk, E. Jamshidpour, T. Lubin, L. Baghli and N. Takorabet, "Influence of High-Frequency Operation on the Efficiency of a PMSM Drive," in Proceedings of 2024 International Conference on Electrical Machines (ICEM), Torino, Italy, 2024, pp. 1-7.
    [31] 蔡宇, "考量死區時間效應之碳化矽同步馬達驅動器設計",國立成功大學電機工程學系碩士論文,2023.
    [32] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed..
    [33] 羅德煒, "碳化矽功率元件切換頻率對馬達驅動性能之影響分析",國立成功大學電機工程學系碩士論文,2019.
    [34] "使用C2000 微控制器针对三相并网应用的软件锁相环设计 (Rev. A)," [Online]. Available: https://www.ti.com/cn/lit/an/zhca581a/zh ca581a.pdf.
    [35] "FGY4L140T120SWD," [Online]. Available: https://www.onsemi.com/ download/data-sheet/pdf/fgy4l140t120swd-d.pdf.
    [36] "NUCLEO-G431RB," [Online]. Available: https://www.st.com/en/ evaluation-tools/nucleo-g431rb.html#overview.

    無法下載圖示 校內:2027-08-26公開
    校外:2027-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE