簡易檢索 / 詳目顯示

研究生: 康鼎佳
kang, ting-jia
論文名稱: 以溶膠凝膠法製作反尖晶石鈦酸鎂薄膜
Fabrication and Characterization of Inverse Spinel Mg2TiO4 Thin Films by Sol–Gel Method
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 66
中文關鍵詞: Mg2TiO4薄膜溶膠凝膠光致螢光
外文關鍵詞: Mg2TiO4 thin films, sol-gel process, photoluminescence
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文以溶膠-凝膠法製備Mg2TiO4薄膜,並且使用旋轉塗佈方式沉積於p-type Si(111)基板上,選用鋁(Al)作為上電極,形成金屬/氧化層/半導體(MOS)電容結構,探討不同薄膜退火溫度下,介電薄膜的物理特性、電特性。隨後去比較不同退火條件下光致螢光特性方面的差異,並推測其可能原因。實驗結果顯示,隨著退火溫度從700℃增加到900℃,由XRD可看出首先在700℃ Mg2TiO4薄膜幾乎為非晶,直到退火800℃才有明顯的Mg2TiO4結晶相,當溫度升高到900℃後則出現MgTiO3的二次相。再從SEM發現表面型態由700℃到900℃退火,晶粒大小有成長的趨勢,到退火900℃後則發現表面有多處區塊突起。推測在退火900℃時基板和薄膜接面有嚴重的擴散,並輔以高解析電子能譜儀(XPS)得到佐證。電性方面,比較不同退火溫度下,發現薄膜退火800℃的漏電流為10-7J(A/cm2)~10-8J(A/cm2)和電容值(950pF),並經由平板電容公式計算結果,可得到在100kHz下k值在12左右。光學特性方面,首先從光致螢光光譜可發現退火700℃增加到800℃,波長700nm到750nm區段光致螢光有明顯增強,退火900℃後光致螢光減弱,退火1000℃後光致螢光幾乎不太明顯,接著比較在不同氧氣含量下退火(O2、vacuum) 光致螢光光譜,發現到氧氣有明顯光致螢光,真空則變得很微弱,綜合一些分析發現結晶性可能會影響光致螢光強度,而氧空缺會抑制光至螢光強度,最後我們推測在700nm到750nm區段光致螢光原因可能為Mg2TiO4薄膜本質結構上的缺陷所產生,因此選擇適當的結晶溫度與在氧氣下退火可以改善Mg2TiO4薄膜發光特性。

    In this study, Mg2TiO4 thin films were deposited on p-type Si(111) substrate by the sol-gel process. Firstly, the Mg2TiO4 thin films’ structural, optical and electrical properties were characterized at different annealing temperatures using x-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), conductivity measurements and photoluminescence (PL). Experimental results indicate that the Mg2TiO4 thin films crystallized at the annealing temperature of 800℃, and the interface between the thin films and substrate began diffusing at an annealing temperature of 900℃. The interface diffusion apparently influenced the thin films’ structural, optical and electrical properties Hence, we obtained the best properties at an 800℃annealing temperature, at which point the leakage current was 10-7J(A/cm2)~10-8J(A/cm2), the dielectric constant was approximately 12, and the photoluminescence had a strong intensity at the 700nm-750nm wavelength.
    Secondly, we introduced different atmospheres (Air、O2、N2、N2/H2、vacuum) when annealing, and then compared the influence of these atmospheres on photoluminescence. It was found that the O2 atmosphere had the strongest intensity, while the N2/H2 atmosphere had the weakest. Consequently, we suspect that the oxygen vacancy may suppress Mg2TiO4 thin film photoluminescence intensity. Ultimately, we found that choosing an appropriate crystallizing and annealing temperature in an O2 atmosphere can achieve strong photoluminescence intensity for Mg2TiO4thin films.

    摘要I AbstractIII 目錄V 圖目錄VII 表目錄IX 第一章 緒論1 第二章 理論基礎2 2-1 介電材料與原理簡介2 2-1-1 介電原理2 2-1-2 高介電材料的選擇4 2-1-2-1 金氧半電容(MOS)應用4 2-1-2-2 微波介電應用6 2-2發光材料與發光原理簡介7 2-2-1 螢光材料介紹7 2-2-2 發光原理8 2-2-3 影響發光因素13 2-3 Mg2TiO4簡介與應用14 第三章 實驗流程與儀器設備16 3-1實驗流程16 3-1-1藥品16 3-1-2 基板清洗17 3-1-3 樣品製備18 3-2 儀器設備20 3-2-1 溶膠-凝膠法 25 3-2-2 X-ray繞射光譜27 3-2-3 掃瞄式電子顯微鏡30 3-2-4 拉曼光譜33 3-2-5 光致螢光光譜35 第四章 結果與討論 37 4-1 不同退火條件對於Mg2TiO4薄膜之影響37 4-1-1 不同退火溫度對於Mg2TiO4薄膜之影響37 4-1-1-1 X光繞射分析37 4-1-1-2 X光電子能譜元素鍵結能與含量分析40 4-1-1-3 掃描式電子顯微鏡分析44 4-1-1-4 原子力顯微鏡分析46 4-1-1-5 電性分析48 4-1-2 不同氧氣含量對於Mg2TiO4薄膜之影響53 4-1-2-1 X光電子能譜元素鍵結能分析53 4-1-2-2 掃描式電子顯微鏡分析55 4-2 Mg2TiO4薄膜光致螢光光譜分析56 第五章 結論62 參考文獻63

    [1]T. Ye, S. Li, X. Wu, M. Xu, X. Wei, K. Wang, H. L. Bao, J. Q. Wang and J. S. Chen , “Sol-gel preparation of efficient red phosphor Mg2TiO4:Mn4+ and XAFS investigation on the substitution of Mn4+ for Ti4+ ,” J. Mater. Chem. C, 1 [28] 4327-4333 (2013)
    [2]H. Kominami, M. Tanaka, K. Hara, Y. Nakanishi and Y. Hatanaka, “Synthesis and luminescence properties of Mg-Ti-O:Eu red-emitting phosphors,” phys. stat. sol. (c), 3 [8] 2758– 2761 (2006)
    [3]郭原呈, “MgZn(Nb1-xTax)4O12陶瓷在微波頻段之研究與應用”,國立成功大學電機工程學系,碩士論文,民國一百零一年.
    [4]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯),“陶瓷材料概論”,曉出版社,民國七十七年.
    [5]林子超, “射頻磁控濺鍍法製備閘極氧化層之 鈦-鋁-銦-氧薄膜研究” ,國立台灣科技大學高分子工程研究所,碩士論文,民國九十八年.
    [6]蔡濱祥, “尖晶石系(MgxZn1-x)(In2-yGay)O4:Eu3+,Tb3+螢光粉體製備及其光致發光特性研究” ,國立成功大學材料科學及工程學系,博士論文,民國九十四年.
    [7]楊俊英,“電子產業用螢光材料之應用調查”,工研院,民國八十一年.
    [8]劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”,全華圖書股份有限公司,民國九十二年.
    [9]蘇勉曾、吳世康, “發光材料” ,4,p.2,(1996)
    [10]R. K. Bhuyan, T. S. Kumar, A. Perumal, P. Saravanan and D. Pamu, “Effect of annealing and atmosphere on the structure and optical properties of Mg2TiO4 thin films obtained by the radio frequency magnetron sputtering method,” J. Exp. Nanosci. ,8 [3] 371–381 (2013)
    [11]W. A. Deer, R. A. Howie and J. Zussman, “An introduction to the rock-forming minerals,” 2nd ed. (1992)
    [12]C. L. Huang and C. En. Ho, “Microwave dielectric properties of (Mg1-xNix)2TiO4 (x=0.02–0.1) ceramics,” Int. J. Appl. Ceram. Technol. ,7 [s1] 163–169 (2010)
    [13]辜聖閎, “利用溶膠-凝膠法製備p型Al掺雜ZnO:N薄膜並探討其結構、光學與電性質”,國立台灣科技大學機械工程系,碩士論文,民國一百年.
    [14]S. Fujihara,J. kusakado and T. Kimura, “Fluorine doping in transparent conductive ZnO thin films by a sol-gel method using trifluoroacetic acid,” J. Mater. Sci. Lett.,17 [9] 781-783 (1998).
    [15]陳慧瑛,黃定加,朱秦億,“溶膠凝膠法在薄膜製備上之應用”,化工技術,7 [11] 152-167 (1999)
    [16]JCPDS, International Centre for Diffraction Data “Selected powder diffraction data for metals and alloys,” The Centre, USA, 108 (1978)
    [17]F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin and Y. S. Yu, “Blueshift of near band edge emission in Mg doped ZnO thin films and aging,” J.Appl. Phys, 95 [9] 4772–4776 (2004)
    [18]S. B. Xue, H. Z. Zhang, C. S. Xue, L. J. Hu, B. L. Li and S. Y. Zhang, “Effect of temperature on structural and morphologic properties of ZnO films annealed in ammonia ambient,” J. Electron. Mater.,36 [4] 502-506 (2007)
    [19]R. Thangavel, R. S. Moirangthem, W. S. Lee, Y. C. Chang, P. K. Wei and J. Kumar, “Cesium doped and undoped ZnO nanocrystalline thin films: a comparative study of structural and micro-Raman investigation of optical phonons,” J. Raman Spectrosc.,41 [12] 1594-1600 (2010)
    [20]B. D. Cullity, “Elements of X-ray Diffraction (2nd edn),” Addison-Wesley: Reading MA (1978)
    [21]G. Eriksson, A. D. Pelton, “Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MnO-TiO2, MgO-TiO2,FeO-TiO2, Ti2O3-TiO2, Na2O-TiO2, and K2O-TiO2 systems,” Metall. Trans. B,24 [5] 795-805 (1993)
    [22]R. Alfonsetti, L. Lozzi, M. Passacantando, P. Picozzi,S. Santucci, “SiOx surface stoichiometry by XPS: A comparison of various methods,” Surf. Interface Anal. ,22 [1-12] 89–92 (1994)
    [23]W. Braue, H. J. Dudek, G. Ziegler, “XPS study of glassy grain boundary layers in dense, high-strength silicon nitride,” J. Non-Cryst. Solids,56 [1-3] 185-190 (1983)
    [24]C. H. Hsu, J. S. Lin and H. W. Yang, “Fabrication and characterization of MgAl2O4 thin films by Sol-Gel method,” Adv. Mat. Res.,216 514-517 (2011)
    [25]F. Nasim, A. Ali, A. S. Bhatti and S. Naseem, “Temperature dependent tuning of the flat band voltages of TiO2/Si interfaces,” J.Appl. Phys. ,110 [11] 114517 (2011)
    [26]Sze, S. M. “Physics of Semiconductor Devices 2nd ed.,” Wiley New York (1981)
    [27]S. Hoang, S. P. Berglund, N. T. Hahn, A. J. Bard and C. B. Mullins, “Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via Cotreatment with H2 and NH3: synergistic effects between Ti3+ and N,” J. Am. Chem. Soc. , 134 [8] 3659−3662 (2012)
    [28]E. A. V. Ferri, T. M. Mazzo, V. M. Longo, E. Moraes, P. S. Pizani, M. S. Li, et al., “Very intense distinct blue and red photoluminescence emission in MgTiO3 thin films prepared by the polymeric precursor method: An experimental and theoretical approach,” J. Phys. Chem. C,116 [29] 15557–15567 (2012)
    [29]R. K. Bhuyan, T. S. Kumar, A. Perumal, P. Saravanan, D. Pamu. J. Exp. Nanosci. ,8 [3] 371–381 (2013)
    [30]E. A. V. Ferri, J. C. Sczancoski, L. S. Cavalcante, E. C. Paris, J. W. M. Espinosa, A. T. de Figueiredo, et al., “Photoluminescence behavior in MgTiO3 powders with vacancy/distorted clusters and octahedral tilting,” Mater. Chem. Phys.,117 [1] 192–198 (2009)
    [31]O. A. Graeve, S. Varma, G. R. George, D. R. Brown and E. A. Lopez, “Synthesis and characterization of luminescent yttrium oxide doped with Tm and Yb,” J. Am. Ceram. Soc., 89 [3] 926–931 (2006).
    [32]D. Fukuda, H. Takebe and M. Kuwabara, “Microstructure and photoluminescence properties of Mg-doped BaTiO3:Pr3+ phosphor,” J. Am. Ceram. Soc., 90 [3] 2670–2672 (2007)
    [33]D. Zhang, J. Zhang, Y. Cheng, L. Yuan and X. Miao, “Ultraviolet emission and electrical properties of aluminum-doped zinc oxide thin films with preferential c-axis orientation,” J.Am. Ceram. Soc., 93 [10] 3291–3298 (2010)
    [34]M. Wang and L. Zhang, “The influence of orientation on the photoluminescence behavior of ZnO thin films obtained by chemical solution deposition,” Mater. Lett., 63 [2] 301–303 (2009)
    [35]Y. F. Gao, M. Nagai, Y. Masuda, F. Sato and K. Koumoto, “Electrochemical deposition of ZnO film and its photoluminescence properties,” J. Cryst. Growth, 286 [2] 445–450 (2006)
    [35]S. Raghavan and P. K. Imbrie, “Ex-Situ stress measurements in polycrystalline ceramics using photo-stimulated luminescence spectroscopy and high-energy X-Rays,” J. Am. Ceram. Soc., 92 [7] 1567–1573 (2009)

    無法下載圖示 校內:2018-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE