簡易檢索 / 詳目顯示

研究生: 許欽堯
Hsu, Chin-yao
論文名稱: 聚乙烯胺穩定硒化鎘奈米粒子之合成與發光性質之研究
Syntheses and Luminescence of CdSe Nanoparticles Stabilized with Poly(vinylamine)
指導教授: 侯聖澍
Hou, Sheng-shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 109
中文關鍵詞: 量子點光活化聚乙烯胺硒化鎘
外文關鍵詞: Photoactivation, Quantum dots, CdSe, Poly(vinylamine)
相關次數: 點閱:113下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中於室溫下水相中合成硒化鎘奈米粒子並使用聚乙烯胺(PVAm)高分子為穩定劑。在這實驗中使用離子沉澱法合成奈米粒子,使用鎘鹽為氯化鎘,而使用硒元素前驅物為硒化氫(H2Se)氣體及其鹼鹽硒氫化鈉(NaHSe),所以利用兩種不同方式添加硒化物於Cd2+-PVAm溶液中合成硒化鎘奈米粒子。在PVAm溶液中,藉由控制溶液酸鹼值以調控高分子鏈上電荷密度,進而改變高分子鏈於溶液中的型態,也藉由改變溶劑比例進而改變高分子鏈之型態。藉由調整酸鹼值及共溶劑可以改變PVAm高分子對於CdSe奈米粒子生成時的氨基的穩定作用及高分子鏈間的生長空間,進而操控所生成奈米粒子其粒徑。並以兩種不同方式添加硒化物於反應溶液,在添加硒氫化鈉採取快速注入方式,而使用硒化氫氣體則採取藉由氮氣緩慢帶入反應溶液,由此改變粒子生長時反應濃度條件,發現使用硒化氫合成可以得到表面缺陷較少且放光強度較高的硒化鎘奈米粒子。由於新鮮製備的硒化鎘奈米粒子具有較弱放光強度,所以採取光活化作用以增強其放光強度,比較兩種不同添加方式所合成硒化鎘奈米粒子經光活化結果,並推論PVAm型態會影響光活化之速率及程度。

    In this study, the CdSe nanoparticles (NPs) were synthesized using poly(vinylamine) (PVAm) as the stabilizer in aqueous phase at room temperature. The procedures for the synthesis involve transformation of Se precursors, H2Se or NaHSe, to produce CdSe NPs in the stock solution, which contains Cd2+-PVAm. The size of CdSe NPs could be controlled by varying the pH of the solution and the ratio of the methanol and water co-solvent in the Cd2+-PVAm stock solution. The change of the size of CdSe NPs due to different pH values and the co-solvent is attributed to the variation of the chelating ability of the amine groups and the conformation of the polymer chain. In this study, the methods of adding the Se precursor were to first inject the NaHSe solution to the Cd2+-PVAm solution and to purge slowly the H2Se gass to the solution, that control the concentration of the Se2- for the growth of the CdSe NPs. The CdSe NPs prepared by purging H2Se shows stronger PL intensity, that means the surface defeats were less. Although the pre-prepared CdSe NPs shows weak PL intensity, the photoactivation can enhance the intensity of the PL emission up many times. Compared the results of the CdSe NPs after the photoactivation, the comformation of the PVAm influenced the degree of the photoactivcation.

    中文摘要........I Abstract........II 誌謝....III 總目錄..IV 圖目錄..VIII 表目錄..XIII 第一章、緒論....1 1-1 前言........1 1-1.1 奈米科學..1 1-1.2 半導體奈米晶體之製作與應用...2 1-1.3 硒化鎘﹙CdSe﹚膠體溶液.......3 1-2 研究動機與目的.................4 第二章、原理與文獻回顧.............6 2-1 化學觀點....6 2-1.1 量子侷限效應(Quantum confined effect)...8 2-1.2 表面效應..12 2-1.3 光學性質..13 2-1.4 發光原理..18 2-2 硒化鎘量子點膠體溶液之合成..20 2-3 於水相中製備硒化鎘奈米粒子之合成與性質..24 2-4 於水相中合成CdSe奈米粒子經光活化(Photoactivation)提升PL放光強度之化學反應機構..29 2-5 PVAm性質介紹..36 第三章、實驗部分..40 3-1 藥品..40 3-2 實驗器材..41 3-3 實驗步驟..43 3-3.1 合成聚乙烯胺poly (vinyl amine)(PVAm)及聚乙烯銨(PVAm•HCl)..43 3-3.2 硒化鎘奈米粒子﹙CdSe nanoparticles﹚之製備..44 ﹙一﹚以硒氫化鈉為前驅物合成硒化鎘奈米粒子..44 ﹙二﹚以硒化氫H2Se氣體為前驅物合成硒化鎘奈米粒子..46 (三)於實驗中所調整之變因..47 3-3.3 利用光活化(Photoactivation)光化學反應隨時間觀測CdSe-PVAm奈米粒子溶液放光光譜..49 3-4 鑑定與分析..50 第四章、結果與討論..52 4-1 硒化鎘量子點膠體溶液之合成..52 4-1.1 以硒氫化鈉(NaHSe)水溶液為前驅物合成硒化鎘奈米粒子..52 (a)溶液酸鹼性﹙pH﹚的影響..52 (b)在不同比例甲醇與水共溶劑系統中的影響..63 (c)改變反應時的溫度對於CdSe奈米粒子的影響..66 4-1.2 以硒化氫(H2Se)氣體為前驅物合成硒化鎘奈米粒子..69 (e)溶液酸鹼性﹙pH﹚的影響..69 比較兩種不同合成方式製備CdSe奈米粒子溶液..77 (f)在不同比例甲醇與水共溶劑系統中的影響..78 4-2 探討於水相合成CdSe奈米粒子經光活化(Photoactivation)其PL發光性質..80 第五章、結論..88 參考文獻..89 自述..93

    (1)Trindade, T.; O’Brien, P.; Pickett, N. L. Chem. Mater. 2001, 13, 3843.
    (2)Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. J. AM. CHEM. SOC. 2008, 130, 4007.
    (3)Weiss, E. A.; Chiechi, R. C.; Geyer, S. M.; Porter, V. J.; Bell, D. C.; Bawendi, M. G.; Whitesides, G. M. J. Am. Chem. Soc. 2008, 130, 74.
    (4)Weiss, E. A.; Porter, V. J.; Chiechi, R. C.; Geyer, S. M.; Bell, D. C.; Bawendi, M. G.; Whitesides, G. M. J. Am. Chem. Soc. 2008, 130, 83.
    (5)Lim, J.; Jun, S.; Jang, E.; Baik, H.; Kim, H.; J, C. Adv. Mater. 2007, 19, 1927.
    (6)Bailey, R. E.; Smith, A. M.; Nie, S. M. Physica E 2004, 25, 1.
    (7)Smith, A. M.; Nie, S. M. Analyst 2004, 129, 672.
    (8)Susumu, K.; Uyeda, H. T.; Medintz, I. L.; Pons, T. J. Am. Chem. Soc. 2007, 129, 13987.
    (9)Dennis, A. M.; Bao, G. Nano Lett. 2008, 8, 1439.
    (10)Lu, H. C.; Schöps, O.; Woggon, U.; Niemeyer, C. M. J. Am. Chem. Soc. 2008, 130, 4815.
    (11)Duan, H.; Nie, S. J. Am. Chem. Soc. 2007, 129, 3333.
    (12)Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
    (13)Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. B 1996, 100, 468.
    (14)Peng, X. G.; Peng, Z. A. J. Am. Chem. Soc. 2001, 123, 183.
    (15)Li, J. J.; Wang, Y. A.; Guo, W. H.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. J. Am. Chem. Soc. 2003, 125, 12567.
    (16)Asokan, S.; Krueger, K. M.; Alkhawaldeh, A.; Carreon, A. R.; Mu, Z.; Colvin, V. L.; Mantzaris, N. V.; Wong, M. S. Nanotechnology 2005, 2000.
    (17)Boatman, E. M.; Lisensky, G. C. J. Chem. Educ. 2005, 82, 1697.
    (18)Xie, R. G.; Kolb, U.; Li, J. X.; Basche, T.; Mews, A. J. Am. Chem. Soc. 2005, 127, 7480.
    (19)Norman, R. S.; Stone, J. W.; Gole, A.; Murphy, C. J.; Sabo-Attwood, T. L. Nano Lett. 2008, 8, 306.
    (20)Schmid, G. In Quantum Dots; Parak, W. J., Manna, L., Simmel, F. C., Gerion, D., Alivisatos, P., Eds.; WILEY-VCH Verlag GmbH & Co. KGaA: 2004, 4-24.
    (21)Rogach, A. L.; Kornowski, A.; Gao, M.; Eychmu1ller, A.; H., W. J. Phys. Chem. B 1999, 103, 3065.
    (22)Yu, W. W.; Qu, L. H.; Guo, W. H.; Peng, X. G. Chem. Mater. 2003, 2003, 2854.
    (23)Lin, Y. W.; Tseng, W. L.; Chang, H. T. Adv. Mater. 2006, 18, 1381.
    (24)Verberk, R.; Oijen, A. M. V.; Orrit, M. Phys. Rev. B 2002, 66, 233202.
    (25)Kuno, M.; Fromm, D. P.; Johnson, S. T.; A. Gallagher, A.; Nesbitt, D. J. Phys. Rev. B 2003, 67, 125304.
    (26)Frantsuzov, P. A.; Marcus, R. A. Phys. Rev. B 2005, 72, 155321.
    (27)Embden, J. V.; Jasieniak, J.; Gómez, D. E.; Mulvaney, P.; Giersig, M. Aust. J. Chem. 2007, 60, 457.
    (28)Heyes, C. D.; Kobitski, A. Y.; Breus, V. V.; Nienhaus, G. U. Phys. Rev. B 2007, 75, 125431.
    (29)Xu, L.; Huang, X.; Huang, H.; Chen, H.; Xu, J.; Chen, K. Jpn. J. Appl. Phys 1998, 37, 3491.
    (30)Liu, S. H.; Qian, X. F.; Yuan, J. Y.; Yin, J.; He, R.; Zhu, Z. K. Mater. Res. Bull. 2003, 38, 1359.
    (31)Yochelis, S.; Hodes, G. Chem. Mater. 2004, 16, 2740.
    (32)Raevskaya, A. E.; Stroyuk, A. L.; Kuchmiy, S. Y. J. Colloid Interface Sci. 2006, 302, 133.
    (33)Pan, D. C.; Wang, Q.; Jiang, S. C.; Ji, X. G.; An, L. J. J. Phys. Chem. C 2007, 111, 5661.
    (34)Wang, Y.; Tang, Z.; Correa-Duarte, M. A.; Pastoriza-Santos, I.; Giersig, M.; Kotov, N. A.; Liz-Marza´n, L. M. J. Phys. Chem. B 2004, 108, 15461.
    (35)Huanga, B.; Tomalia, D. A. J. Lumin. 2005, 111, 215.
    (36)Palaniappan, K.; Cuihua Xue, C.; Ganesh Arumugam, G.; Hackney, S. A.; Liu, J. Chem. Mater. 2006, 18, 1275.
    (37)Tian, Y. C.; Newton, T.; Kotov, N. A.; Guldi, D. M.; Fendler, J. H. J. Phys. Chem. 1996, 100, 8927.
    (38)Eychmüller, A.; Rogach, A. L. Pure Appl. Chem 2000, 72, 179.
    (39)Mu, J.; Gao, X. B. J. Dispersion Sci. Technol. 2005, 26, 763.
    (40)Deng, D. W.; Yu, J. S.; Pan, Y. J. Colloid Interface Sci. 2006, 299, 225.
    (41)Yoon, J. H.; Chae, W. S.; Im, S. J.; Kim, Y. R. Mater. Lett. 2005, 59, 1430.
    (42)Chen, M. H.; Gao, L. Inorg. Chem. Commun. 2004, 2004, 673.
    (43)Achari, A. E.; Coqueret, X.; Lablache-Combier, A.; Loucheux, C. Makromol. Chem. 1993, 1994, 1879.
    (44)Sumaru, K.; Matsuoka, H.; Yamaoka, H. J. Phys. Chem. 1996, 100, 9000.
    (45)Qiu, Y. X.; Zhang, T. H.; Ruegsegger, M.; Marchant, R. E. Macromolecules 1998, 31, 165.
    (46)Gu, L.; Zhu, S.; Hrymak, A. N. J. Appl. Polym. Sci. 2002, 86, 3412.
    (47)陳凱民; 侯聖澍 合成具螢光可調性之聚乙烯胺穩定硫化鎘量子點與其光學性質研究.
    (48)Wang, Y.; Chen, X. N.; Pelton, R. Langmuir 2006, 22, 4952.
    (49)Kirwan, L. J.; Papastavrou, G.; Borkovec, M. Nano Lett. 2004, 4, 149.

    下載圖示 校內:2011-07-23公開
    校外:2011-07-23公開
    QR CODE