簡易檢索 / 詳目顯示

研究生: 黃瑋琳
Huang, Wei-Lin
論文名稱: ZnO:Nb2O5應用於提高有機發光二極體元件效率: 陽極緩衝層、漸進式摻雜層及相關機制探討
Application of ZnO:Nb2O5 to Improve the Efficiency of Organic Light-Emitting Diodes: Anode Buffer Layer, Graded-Doping-Layer and Mechanism Investigations
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 有機發光二極體金屬氧化物電洞注入緩衝層漸變式結構
外文關鍵詞: OLED, metal oxide, hole injection, buffer layer, graded structure
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機發光二極體(OLED)作為新一代顯示器之技術之一,與液晶顯示器(LCD)相比OLED可以製作成很薄之螢幕,具有廣視角、可撓曲性、低驅動電壓等優勢,因此在近數十年來引起很大之關注,並大量投入鑽研機制之探討與效能之改善,使OLED相關產品之開發與量產能夠蓬勃發展。
    本論文以提升OLED元件之載子注入與傳輸性質,進而改善元件效率與穩定性為研究動機,探討ZnO摻雜Nb2O5材料,利用熱蒸鍍技術將此金屬氧化物薄膜沉積於OLED元件上,分析此薄膜之特性與如何提升元件整體之性能。
    本論文分為兩個部分,第一部分利用不同Nb2O5摻雜濃度和ZnO基厚度優化之金屬氧化物當作緩衝層,蒸鍍於ITO基板上再使用紫外光臭氧後處理,並利用各種量測方法探討其對於載子注入特性的影響。其中,以X射線與紫外光電子能譜儀測定薄膜之材料特性與功函數值,再利用接觸角量測計算出表面能與極性還有量測表面粗糙度,並利用單載子元件之電流密度數據計算載子遷移率。由量測結果得知,此金屬氧化物作為緩衝層可降低驅動電壓、提升亮度表現與發光效率,具較好的載子平衡效果,可大幅地增強元件整體效能。
    第二部分嘗試將此材料應用於漸變式摻雜結構上,並將原本文獻之兩層摻雜改變為三層摻雜梯度,發現能夠提升元件載子之注入與發光效率,並透過紫外光電子能譜儀之測量結果畫出各層材料之間的能帶關係圖,發現漸變式摻雜層的HOMO位置會介於陽極功函數與傳輸層HOMO之間,可降低載子注入之能障,有效提升電洞之注入,並利用導納頻譜技術對元件之發光行為進行分析,可成功觀察載子之注入、傳輸、堆積、再結合等行為,呼應其光電物理特性之量測,以增加研究內容論述之可靠性。

    In this thesis, we used metal oxide materials of Nb2O5-doped ZnO (NZO) by using thermal evaporation technology to deposit this film on organic light-emitting diodes (OLEDs) and analyzed it how to improve the overall performance of the device. We found out 1nm-NZO thin film with 1mole% was the best parameter in this study and the optimized device got highest current efficiency (5.26 cd/A) and maximum luminous (25370 cd/m2). In the second part, we tried to apply this material to a graded doping structure by thermal co-evaporating with organic layer and changed doping gradient. We found that the three-graded doping layer would move the HOMO energy level to the middle of the energy barrier between the anode and the organic layer so that the energy barrier of carrier injection can be reduced, thereby improving the efficiency of the device.

    摘要I 致謝XI 目錄XII 表目錄XV 圖目錄XVI 第一章 導論1 1-1前言-OLED發展1 1-2研究動機3 1-3文獻回顧5 第二章 理論介紹7 2-1基礎理論7 2-1-1 能帶理論7 2-1-2 受激發光理論9 2-2有機發光二極體元件結構12 2-3有機發光二極體發光原理及發展14 2-4有機發光二極體運作理論16 2-4-1 電荷注入16 2-4-2 電荷傳輸機制18 2-4-3 電荷傳輸19 第三章 實驗步驟與方法22 3-1元件製程與量測流程22 3-2真空熱蒸鍍系統設備23 3-3實驗材料24 3-4基板前置處理步驟26 3-5真空熱蒸鍍實驗步驟27 3-6實驗量測與分析儀器28 3-6-1 單體沉積速率測定28 3-6-2 電致發光光譜與電性量測28 3-6-3 穿透/吸收光譜儀28 3-6-4 變電壓阻抗分析儀29 3-6-5 原子力顯微鏡29 3-6-6 接觸角量測儀29 3-6-7 X光電子能譜儀-XPS分析30 3-6-8 紫外光電子能譜儀-UPS分析31 第四章 結果與討論32 4-1經紫外線臭氧後處理的金屬氧化物緩衝層(ZnO與ZnO: Nb2O5)對Alq3-OLED元件的影響32 4-1-1 光電特性分析-元件之V-J-L與效率表現33 4-1-2 NZO薄膜單載子元件電流密度分析38 4-1-3 NZO薄膜之XPS能譜分析41 4-1-4 NZO薄膜之功函數分析46 4-1-5 NZO薄膜之接觸角測量和表面能分析48 4-1-6 NZO薄膜之表面粗糙度(AFM)與穿透度分析50 4-1-7 最佳參數之緩衝層應用於p-i-n結構OLED52 4-1-8 具不同摻雜濃度NZO緩衝層的 Alq3 OLED 總結55 4-2金屬氧化物(ZnO: Nb2O5)應用於漸變式摻雜注入層57 4-2-1 漸變式摻雜注入層之元件結構57 4-2-2 光電特性分析-元件之V-J-L與效率表現58 4-2-3 漸變式摻雜注入層元件之電容頻譜分析62 4-2-4 漸變式摻雜注入層之UPS能譜分析67 4-2-5 漸變式摻雜注入層之表面粗糙度與穿透度71 4-2-6 漸變式摻雜注入層之元件總結74 第五章 結論與未來展望75 5-1 結論75 5-2 未來展望76 文獻回顧77

    [1] M. Pope, H. Kallmann, and P. Magnante, "Electroluminescence in organic crystals," The Journal of Chemical Physics, vol. 38, no. 8, pp. 2042-2043, 1963.
    [2] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied physics letters, vol. 51, no. 12, pp. 913-915, 1987.
    [3] C. W. Tang, S. A. VanSlyke, and C. H. Chen, "Electroluminescence of doped organic thin films," Journal of Applied Physics, vol. 65, no. 9, pp. 3610-3616, 1989.
    [4] P. Burrows, G. Gu, S. Forrest, E. Vicenzi, and T. Zhou, "Semitransparent cathodes for organic light emitting devices," Journal of Applied Physics, vol. 87, no. 6, pp. 3080-3085, 2000.
    [5] L. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Applied Physics Letters, vol. 70, no. 2, pp. 152-154, 1997.
    [6] M. G. Mason, L. S. Hung, C. W. Tang, S. Lee, K. W. Wong, and M. Wang, "Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices," Journal of Applied Physics, vol. 86, no. 3, pp. 1688-1692, 1999.
    [7] H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, "Indium tin oxide thin films for organic light-emitting devices," Applied physics letters, vol. 74, no. 23, pp. 3444-3446, 1999.
    [8] H. Yu, X. Feng, D. Grozea, Z. Lu, R. Sodhi, A. Hor, and H. Aziz, "Surface electronic structure of plasma-treated indium tin oxides," Applied Physics Letters, vol. 78, no. 17, pp. 2595-2597, 2001.
    [9] T. Hu, F. Zhang, Z. Xu, S. Zhao, X. Yue, and G. Yuan, "Effect of UV–ozone treatment on ITO and post-annealing on the performance of organic solar cells," Synthetic metals, vol. 159, no. 7-8, pp. 754-756, 2009.
    [10] C. Li, C. Kwong, A. Djurišić, P. Lai, P. Chui, W. Chan, and S. Liu, "Improved performance of OLEDs with ITO surface treatments," Thin Solid Films, vol. 477, no. 1-2, pp. 57-62, 2005.
    [11] K.-X. Ma, C.-H. Ho, F. Zhu, and T.-S. Chung, "Investigation of surface energy for organic light emitting polymers and indium tin oxide," Thin Solid Films, vol. 371, no. 1-2, pp. 140-147, 2000.
    [12] A. Rudawska and E. Jacniacka, "Analysis for determining surface free energy uncertainty by the Owen–Wendt method," International Journal of Adhesion and Adhesives, vol. 29, no. 4, pp. 451-457, 2009.
    [13] C. Wu, C. Wu, J. Sturm, and A. Kahn, "Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices," Applied Physics Letters, vol. 70, no. 11, pp. 1348-1350, 1997.
    [14] Z. Z. You, "Combined AFM, XPS, and contact angle studies on treated indium–tin-oxide films for organic light-emitting devices," Materials letters, vol. 61, no. 18, pp. 3809-3814, 2007.
    [15] H.-T. Lu and M. Yokoyama, "Enhanced emission in organic light-emitting diodes using Ta2O5 buffer layers," Solid-State Electronics, vol. 47, no. 8, pp. 1409-1412, 2003.
    [16] T. Matsushima, G.-H. Jin, and H. Murata, "Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide," Journal of Applied Physics, vol. 104, no. 5, p. 054501, 2008.
    [17] J. Meyer, T. Winkler, S. Hamwi, S. Schmale, H. H. Johannes, T. Weimann, P. Hinze, W. Kowalsky, and T. Riedl, "Transparent inverted organic light‐emitting diodes with a tungsten oxide buffer layer," Advanced materials, vol. 20, no. 20, pp. 3839-3843, 2008.
    [18] H. Zhang and W. C. Choy, "Indium tin oxide modified by Au and vanadium pentoxide as an efficient anode for organic light-emitting devices," IEEE transactions on electron devices, vol. 55, no. 9, pp. 2517-2520, 2008.
    [19] Y.-C. Chen, P.-C. Kao, and S.-Y. Chu, "UV-ozone-treated ultra-thin NaF film as anode buffer layer on organic light emitting devices," Optics express, vol. 18, no. 102, pp. A167-A173, 2010.
    [20] Y.-C. Chen, P.-C. Kao, Y.-C. Fang, H.-H. Huang, and S.-Y. Chu, "How the surface energy of ultra-thin CuF2 film as anode buffer layer affect the organic light-emitting devices?," Applied Physics Letters, vol. 98, no. 26, p. 124, 2011.
    [21] Y.-C. Chen, Y.-D. Juang, S.-Y. Chu, and P.-C. Kao, "Investigation of time-dependent UV-ozone treatment on an ultra-thin AgF buffer layer for organic light-emitting diodes," Journal of the Electrochemical Society, vol. 159, no. 4, p. H388, 2012.
    [22] C. H. Yi, C. H. Jeong, Y. H. Lee, Y. W. Ko, and G. Y. Yeom, "Oxide surface cleaning by an atmospheric pressure plasma," Surface and Coatings Technology, vol. 177, pp. 711-715, 2004.
    [23] H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, M.-R. Yang, and Z.-L. Tseng, "Enhancement of hole-injection and power efficiency of organic light emitting devices using an ultra-thin ZnO buffer layer," Journal of Alloys and Compounds, vol. 479, no. 1-2, pp. 520-524, 2009.
    [24] K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, and A. Hagfeldt, "A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes," Solar energy materials and solar cells, vol. 73, no. 1, pp. 51-58, 2002.
    [25] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, "ZnO Schottky ultraviolet photodetectors," Journal of crystal Growth, vol. 225, no. 2-4, pp. 110-113, 2001.
    [26] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S.-E. Lindquist, L. Wang, and M. Muhammed, "High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes," The Journal of Physical Chemistry B, vol. 101, no. 14, pp. 2598-2601, 1997.
    [27] H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, and R.-C. Chang, "Improved hole-injection and power efficiency of organic light-emitting diodes using an ultrathin Li-doped ZnO buffer layer," Journal of The Electrochemical Society, vol. 154, no. 3, p. J105, 2007.
    [28] H.-W. Lu, P.-C. Kao, Y.-D. Juang, and S.-Y. Chu, "The effects of ultraviolet-ozone-treated ultra-thin MnO-doped ZnO film as anode buffer layer on the electrical characteristics of organic light-emitting diodes," Journal of Applied Physics, vol. 118, no. 18, p. 185501, 2015.
    [29] L. Hung and C. W. Tang, "Interface engineering in preparation of organic surface-emitting diodes," Applied physics letters, vol. 74, no. 21, pp. 3209-3211, 1999.
    [30] D. Gao, M. Chan, S. Tong, F. Wong, S. Lai, C. Lee, and S. Lee, "Application of an evaporable fluoro-molecule as an anode buffer layer in organic electroluminescent devices," Chemical physics letters, vol. 399, no. 4-6, pp. 337-341, 2004.
    [31] H.-W. Lu, P.-C. Kao, and S.-Y. Chu, "Effects of ultra-thin Al2O3-doped ZnO film as anode buffer layer grown by thermal evaporation for organic light-emitting diodes," ECS Journal of Solid State Science and Technology, vol. 6, no. 1, p. R14, 2016.
    [32] C.-T. Tsai, Y.-H. Liu, J.-F. Tang, P.-C. Kao, C.-H. Chiang, and S.-Y. Chu, "Effects of novel transition metal oxide doped bilayer structure on hole injection and transport characteristics for organic light-emitting diodes," Synthetic Metals, vol. 243, pp. 121-126, 2018.
    [33] H. Skoog, "Nieman. Principles of instrumental analysis," Harcourt College Publishers, vol. 5, pp. 329-351, 1998.
    [34] K. Goushi, K. Yoshida, K. Sato, and C. Adachi, "Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion," Nature Photonics, vol. 6, no. 4, pp. 253-258, 2012.
    [35] M. Eck, "Performance Enhancement of Hybrid Nanocrystal-polymer Bulk Heterojunction Solar Cells: Aspects of Device Efficiency, Reproducibility, and Stability," Verlag nicht ermittelbar, 2014.
    [36] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, "Organic electroluminescent device with a three-layer structure," Japanese journal of applied physics, vol. 27, no. 4A, p. L713, 1988.
    [37] V. C. Bender, T. B. Marchesan, and J. M. Alonso, "Solid-state lighting: A concise review of the state of the art on LED and OLED modeling," IEEE Industrial Electronics Magazine, vol. 9, no. 2, pp. 6-16, 2015.
    [38] M. Baldo, M. E. ThompSOn, and S. Forrest, "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer," Nature, vol. 403, no. 6771, pp. 750-753, 2000.
    [39] H. Tanaka, K. Shizu, H. Miyazaki, and C. Adachi, "Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine–triphenyltriazine (PXZ–TRZ) derivative," Chemical Communications, vol. 48, no. 93, pp. 11392-11394, 2012.
    [40] D.A.Neamen, Semiconductor Physics & Devices, 2nd ed. p. 319.
    [41] D. Pinner, R. Friend, and N. Tessler, "Transient electroluminescence of polymer light emitting diodes using electrical pulses," Journal of Applied Physics, vol. 86, no. 9, pp. 5116-5130, 1999.
    [42] M. A. Lampert and P. Mark, "Current injection in solids," 1970.
    [43] I. Irfan, S. Graber, F. So, and Y. Gao, "Interplay of cleaning and de-doping in oxygen plasma treated high work function indium tin oxide (ITO)," Organic Electronics, vol. 13, no. 10, pp. 2028-2034, 2012.
    [44] S. Y. Kim, J.-L. Lee, K.-B. Kim, and Y.-H. Tak, "Effect of ultraviolet–ozone treatment of indium–tin–oxide on electrical properties of organic light emitting diodes," Journal of Applied physics, vol. 95, no. 5, pp. 2560-2563, 2004.
    [45] J. Ma, X. Jiang, Z. Liang, J. Cao, X. Zhang, and Z. Zhang, "Highly power efficient organic light-emitting diodes based on Cs2CO3 n-doped and MoO3 p-doped carrier transport layers," Semiconductor science and technology, vol. 24, no. 3, p. 035009, 2009.
    [46] H.-W. Lu, P.-C. Kao, and S.-Y. Chu, "Improved hole-injection and power efficiency of organic light-emitting diodes using an ultrathin cerium fluoride buffer layer," in Organic Light Emitting Materials and Devices XX, 2016, vol. 9941: International Society for Optics and Photonics, p. 994124.
    [47] J. Xu, Y. Wang, Q. Chen, Y. Lin, H. Shan, V. Roy, and Z. Xu, "Enhanced lifetime of organic light-emitting diodes using soluble tetraalkyl-substituted copper phthalocyanines as anode buffer layers," Journal of Materials Chemistry C, vol. 4, no. 31, pp. 7377-7382, 2016.
    [48] C.-T. Tsai, Y.-Y. Chen, P.-C. Kao, and S.-Y. Chu, "Characterization studies of NiO: K anode buffer layer in Alq3 and TADF-based organic light-emitting diodes by secondary ion mass spectrometry and admittance spectroscopy," Solid-State Electronics, vol. 158, pp. 85-91, 2019.
    [49] C.-Y. Li, C.-C. Lin, S.-Y. Chu, J.-T. Lin, C.-Y. Huang, and C.-S. Hong, "Effects of Nb doping on switching-voltage stability of zinc oxide thin films," Journal of Applied Physics, vol. 128, no. 17, p. 175308, 2020.
    [50] H. Park, H. Kim, J. Lee, K. Lee, J. Yi, S. Oh, S. Sohn, D. Jung, S. Jang, and H. Chae, "Admittance spectroscopic analysis of organic light emitting diodes with the CFX plasma treatment on the surface of indium tin oxide anodes," Thin Solid Films, vol. 516, no. 7, pp. 1370-1373, 2008.
    [51] S. Tsang, S. So, and J. Xu, "Application of admittance spectroscopy to evaluate carrier mobility in organic charge transport materials," Journal of applied physics, vol. 99, no. 1, p. 013706, 2006.

    無法下載圖示 校內:2026-08-20公開
    校外:2026-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE