簡易檢索 / 詳目顯示

研究生: 馬兆賢
Ma, Chao-Hsien
論文名稱: 一個利用殘值超取樣及自我偏壓技術的十二位元每秒取樣四百萬次之雙模式連續漸進逼近式類比數位轉換器
A 12-bit 4-MS/s Dual-Mode SAR ADC with Self-Biased Switching and Residue Oversampling Techniques
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 106
中文關鍵詞: 逐漸趨近式類比數位轉換器動態元件匹配高解析超取樣殘值超取樣自我偏壓
外文關鍵詞: Successive approximation register (SAR) analog-to-digital converter (ADC), Dynamic Element Matching, High-resolution, Oversampling, Residue Oversampling, Self-Biased
相關次數: 點閱:154下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個高解析度之十二位元每秒取樣四百萬次之雙模式連續漸進逼近式類比數位轉換器。
    此類比數位轉換器結合了殘值超取樣的架構與本論文所提出的自我偏壓技術。所提出之自我偏壓技術能透過進入比較前的切換方式來產生在單端模式下所需要的比較基準點,並且可隨著參考電壓改變而跟著準確地改變。另外,殘值超取樣技術利用交換電容陣列搭配動態元件匹配技術對殘值電壓進行重複解析,並將殘值的輸出碼平均以得到更精確的數位碼。以此,在不需校正的情況下,能降低電容不匹配所產生的影響以及提升類比數位轉換器的精確度。
    本論文以華力微28奈米製程研製一個十二位元的逐漸趨近式類比數位轉換器,核心電路面積為0.0665mm2。當晶片操作在0.9伏特的電壓供應下與400萬赫茲(4-MS/s)的取樣頻率時,模擬效能顯示,在奈奎斯特(Nyquist-rate)輸入頻率下,雙端模式可以達到有效位元為 11.70 位元(SNDR為 72.19 dB),單端模式可達到有效位元為10.70位元(SNDR 為 66.17 dB )。

    This thesis presents a high-resolution 12-bit 4-MS/s dual-mode successive-approximation register (SAR) analog-to-digital converter (ADC).
    This SAR ADC adopts proposed Self-Biased Switching and Residue Oversampling techniques. With the proposed Self-Biased Switching, the comparison reference of single-ended mode could be generated before conversion. Besides, this method aligns this comparison reference with Vref enlarged. For Residue Oversampling, by repeating the residue voltage conversion and combining Dynamic Element Matching, roles of capacitors are rearranged to generate different residue voltages. Residue voltages output codes are averaged to generate a high-precision digital code. By this technique, the capacitor mismatch is reduced and accuracy of the ADC is improved without calibration.
    The proof-of-concept 12-bit SAR ADC was fabricated in a HLMC 28-nm CMOS technology, of which the core circuits occupy an area of 0.0665mm2. As the prototype operates at a supply voltage of 0.9 -V and sampling rate of 4-MS/s, the simulation results show that the prototype ADC achieves 72.19 dB and 66.17 dB SNDR with a Nyquist-rate input in differential and single-ended modes, respectively.

    摘 要 I Abstract III List of Tables VIII List of Figures IX List of Abbreviations XIII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Organization 4 Chapter 2 Fundamentals of Analog-to-Digital Converters 5 2.1 Analog to Digital Converter 5 2.2 Quantization Error, Resolution, and Accuracy 6 2.2.1 Quantization Error 7 2.2.2 Resolution 8 2.2.3 Accuracy 9 2.3 Static Specification 10 2.3.1 Offset Error 10 2.3.2 Gain Error 11 2.3.3 Nonlinearity 12 2.4 Dynamic Specification 16 2.4.1 Signal-to-Noise Ratio (SNR) 16 2.4.2 Signal-to-Noise and Distortion Ratio (SNDR) 18 2.4.3 Effective Number of Bits (ENOB) 18 2.4.4 Spurious-Free Dynamic Range (SFDR) 18 2.4.5 Total Harmonic Distortion (THD) 19 2.4.6 Effective Resolution Bandwidth (ERBW) 21 2.4.7 Figure of Merit (FoM) 21 Chapter 3 Introduction of High-Resolution SAR ADC 22 3.1 The Basic of SAR ADC 22 3.1.1 The Concept of SAR ADC 23 3.1.2 Circuit Operation of the SAR ADC Architecture 25 3.2 Performance Limitations of High-Resolution SAR ADCs 28 3.3 Oversampling 32 3.4 Techniques for Nyquist-Rate ADCs 36 3.4.1 Detect-and-Skip Algorithm 36 3.4.2 Correlated-Reversed Switching Technique 38 3.4.3 Majority-Voting Technique 39 3.4.4 Adaptive-Averaging Technique 40 3.4.5 Pipeline SAR ADC 42 Chapter 4 A 12-bit 4-MS/s SAR ADC 45 4.1 Techniques Adopted 46 4.1.1 Self-Biased Switching 46 4.1.2 Residue Oversampling 56 4.2 Architecture of the proposed SAR ADC 63 4.2.1 Simplified-DEM Structure 64 4.2.2 Error-Tolerance Range 66 4.2.3 Architecture 67 4.2.4 Capacitor Switching Methods 71 4.3 Behavior-model Simulations 74 4.3.1 Behavior-model Simulations with SBS 75 4.3.2 Behavior-model Simulations with Noise 76 4.3.3 Behavior-model Simulations with Capacitor Mismatch 78 4.4 Circuit Implementation 79 4.4.1 Bootstrapped Switch 79 4.4.2 Dynamic Two-Stage Comparator 81 4.4.3 Digital Error Correction Decoder 84 4.4.4 Capacitive DAC 86 Chapter 5 Layout and Simulation Results 90 5.1 Layout and Chip Floor Plan 90 5.2 Simulation Results 93 Chapter 6 Conclusions and Future Works 100 Bibliography 102

    [1] B. Murmann, “ADC Performance Survey 1997−2020,” [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.
    [2] Analog Devices Inc., The Data Conversion Handbook. W. Keater, ed. Burlington, MA: Newnes, 2005.
    [3] M.Gustavsson, J. Wikner, N.Tan, CMOS data converters for communications, Kluwer Academic Publishers, 2000.
    [4] C. C. Lee and M. P. Flynn, “A SAR-assisted two-stage pipeline ADC,”IEEE J. Solid-State Circuits, vol. 46, no. 4, Apr. 2011, pp. 859869.
    [5] B. Verbruggen, M. Iriguchi, and J. Craninckx, “A 1.7mW 11b 250Ms/s 2× interleaved fully dynamic pipelined SAR ADC in 40nm digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 466–468.
    [6] B. Verbruggen, K. Deguchi, B. Malki, and J. Craninckx, “ A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1–2.
    [7] W. Liu et al., “A 12-bit 50-MS/s 3.3 mW SAR ADC with background digital calibration,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1–4.
    [8] J. A. McNeill, K. Y. Chan, M. C. W. Coln, C. L. David and C. Brenneman, “All-Digital Background Calibration of a Successive Approximation ADC Using the “Split ADC” Architecture,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 10, Oct. 2011, pp. 2355–2365.
    [9] R. Kapustsa, J. Shen, S. Decker, H. Li, and E. Ibaragi, “A 14b 80 MS/s SAR ADC with 73.6 dB SNDR in 65 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 472–473.
    [10] C. Hsu et al., “A 12-b 40-MS/s Calibration-Free SAR ADC,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 3, March 2018, pp. 881–890.
    [11] J. L. McCreary et al., “All-MOS charge distribution analog-to-digital conversion techniques–part I,” IEEE J. Solid-State Circuits, vol. SSC10, no. 6, Dec. 1975, pp. 371379.
    [12] S. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-um CMOS,” in IEEE J. Solid-State Circuits, vol. 41, no. 12, Dec. 2006, pp. 26692680.
    [13] H. Tai, Y. Hu, H. Chen and H. Chen, “A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196–197.
    [14] G. Huang, S. Chang, C. Liu and Y. Lin, “A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications,” in IEEE J. Solid-State Circuits, vol. 47, no. 11, Nov. 2012, pp. 2783−2795.
    [15] C. Liu, S. Chang, G. Huang, Y. Lin and C. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS,” 2010 Symposium on VLSI Circuits, Honolulu, HI, 2010, pp. 241−242.
    [16] C. Kung, C. Huang, C. Li and S. Chang, “A Low Energy Consumption 10-Bit 100kS/s SAR ADC with Timing Control Adaptive Window,” IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1−4.
    [17] Y. Chung, C. Yen, P. Tsai and B. Chen, “A 12-bit 40-MS/s SAR ADC With a Fast-Binary-Window DAC Switching Scheme,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 10, Oct. 2018, pp. 1989−1998.
    [18] J. H. Tsai et al., “A 0.003mm2 10b 240MS/s 0.7mW SAR ADC in 28nm CMOS With Digital Error Correction and Correlated-Reversed Switching,” in IEEE J. Solid-State Circuits, June 2015, pp. 1382-1398.
    [19] P. Harpe, E. Cantatore and A. v. Roermund, “A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 270271.
    [20] Takashi Morie et al., “A 71dB-SNDR 50MS/s 4.2mW CMOS SAR ADC by SNR enhancement techniques utilizing noise,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 272-273.
    [21] Y. Lim and M. P. Flynn, “A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC,” in IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 29012911, Dec. 2015.
    [22] R. J. Van De Plassche, “Dynamic element matching for high-accuracy monolithic D/A converters,” in IEEE J. Solid-State Circuits, vol. 11, no. 6, Dec. 1976, pp. 795–800.
    [23] Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, Y.-T. Liu, and S.-J. Chang, “A 9-bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS,” IEEE Transactions on Circuits and Systems I, vol. 60, no. 3, pp. 570–581, Mar. 2013.
    [24] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386–387.
    [25] V. Hariprasath, J. Guerber, S.-H. Lee, and U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” Electron. Lett., vol. 46, no. 9, 2010, pp. 620–621.
    [26] B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 739-747, April 2007.

    [27] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” in IEEE J. Solid-State Circuits, vol. 45, no. 4, Apr. 2010, pp. 731–740.
    [28] G.-Y. Huang et al., “A 10-bit 30-MS/s SAR ADC using a monotonic switchback switching method,” in IEEE Transactions on VLSI Systems, vol. 21, no. 3, Dec. 2013, pp. 584-588.
    [29] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” in IEEE J. Solid-State Circuits, vol. 34, no. 5, May 1999, pp. 599–606.
    [30] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, “A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time,” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 314–605.
    [31] C. Hou, S. Chang, H. Wu, H. Hu and E. Cun, “An 8-bit 400-MS/s calibration-free SAR ADC with a pre-amplifier-only comparator,” International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2017, pp. 1–4.
    [32] G.-Y. Huang, S.-J. Chang, Y.-Z. Lin, C.-C. Liu, and C.-P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS,” in IEEE A-SSCC. 2013, pp. 289−292.
    [33] P. Harpe, E. Cantatore, and A. van Roermund, “An Oversampled 12/14b SAR ADC with Noise Reduction and Linearity Enhancements achieving up to 79.1dB SNDR,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 194-195.
    [34] M. Ding, P. Harpe, Y.-H. Liu, B. Busze, K. Philips, and H. Groot, “A 5.5fJ/conv-step 6.4MS/s 13b SAR ADC Utilizing a Redundancy-Facilitated Background Error-Detection-and-Correction Scheme,” in IEEE ISSCC Dig. Tech. Papers, pp. 460−461, Feb. 2015.
    [35] C. Liu, M. Huang and Y. Tu, “A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC,” in IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 2941-2950, Dec. 2016.
    [36] S. Haenzsche, S. Hoppner, G. Ellguth, and R. Schuffy, “A 12bit 4MS/s SAR ADC with Configurable Redundancy in 28nm CMOS Technology,” in IEEE Trans. Circuits and Systems-II, vol.61, no. 11, pp. 835−839, Aug. 2014.
    [37] C. Kung, C. Huang, C. Li and S. Chang, “A Low Energy Consumption 10-Bit 100kS/s SAR ADC with Timing Control Adaptive Window,” 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1−4.
    [38] G. Huang, S. Chang, C. Liu and Y. Lin, “A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783−2795, Nov. 2012.
    [39] Weibo Hu, Donald Y.C. Lie, Yen-Ting Liu, “An 8-bit single-ended ultra-low-power SAR ADC with a novel DAC switching method,” in IEEE Trans. Circuits and Systems-I, vol.60, no.7, pp. 1726-1739, July 2013

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE