簡易檢索 / 詳目顯示

研究生: 賴柏安
Lai, Po-An
論文名稱: 單晶粒超導塊材擄獲磁場能力及機械性質之研究
The Trapped Field and Mechanical Property of Single Grain Superconductor
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 121
中文關鍵詞: 機械性質釔鋇銅氧
外文關鍵詞: Y-Ba-Cu-O, Mechanical Properties
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高溫超導塊材在高磁場環境下冷卻至低溫後具有擄獲磁場的能力,但擄獲磁場與塊材內部感應的超導永久電流相互作用而產生拉伸之電磁應力。當此應力大於塊材的破壞強度時,內部裂縫成長進而造成塊材的破壞。因此,對於高溫超導塊材的發展與應用而言,高磁場應用時的機械穩定性比往日所注重的高臨界密度與大晶粒等性質的重要性相同。本研究目的在於探討單晶粒Y-Ba-Cu-O超導塊材的破壞強度與破壞韌性等機械性質,再經由破壞強度與韌性來計算出試片內部裂縫的長度,並用SEM實際觀察加以應證。
    本研究使用的試片為實驗室自製之單晶粒Y-Ba-Cu-O超導試片,並將試片尺寸磨成直徑為16mm厚4mm。在試片邊緣包覆碳纖維布,並使用具流動性的環氧樹脂填入試片開放性裂縫及塊材與碳纖維布的空隙中,來增加超導試片的機械性質。我們利用微硬度試驗量測超導試片之破壞韌性,未經披覆處理與經過披覆處理的超導試片之破壞韌性分別為0.654MPa×m1/2與0.7MPa×m1/2。
    我們使用物理性質量測系統(PPMS)來量測Y-Ba-Cu-O超導體於低溫與高磁場環境中的機械性質與擄獲磁場能力。經由線性回歸結果,我們得知超導試片於15K的最大擄獲磁場為4.916T。我們觀察到未經披覆處理之超導試片承受7.22MPa之應力後導致試片破裂。而藉由二維擄獲磁場掃瞄量測,我們亦觀察到經過披覆處理之超導試片,在承受13MPa之應力後試片內部有裂縫的出現。因此得知經披覆處理試片的破壞強度大約為無披覆試片的兩倍。藉由無披覆試片的破壞韌性(0.654MPa×m1/2)與破壞強度(7MPa),我們可以算出試片內部之裂縫長度約為1.75mm。實際以SEM所觀察到試片內部(001)面上的裂縫長度範圍介於1~3mm。
    最後我們欲以已知裂縫長度與破壞強度來計算破壞韌性,來印證使用微硬度試驗量測之結果。因此我們藉由CO2雷射在試片切割出特定長度之裂縫。但由於試片經過雷射切割過後,擄獲磁場能力被大幅破壞,並且在低溫環境下易產生磁束跳躍,故無法獲得足夠大之應力造成試片破裂,因此無法得到預期之結果。

    The melt-textured high-temperature supercondutor (HTSC) bulk can trap multi-tesla field via cooling to low temperature under high magnetic field. Howerver, the interaction of the trapped field and the internal current causes the outward electromagnetic stress. When this stress is larger than the fracture strength of the superconductor, the cracks or fracture will be observed. Therefore, the development of HTSC bulks and their applications have come to a point where the mechanical response to high magnetic fields is equally important to their critical-current density and large grain properties. The purpose of this experiment is to calculate the fracture strength and fracture toughness of Y-Ba-Cu-O superconductor. It is permitted to estimate the length of internal crack of Y-Ba-Cu-O bulk with fracture strength and toughness.
    The single grained Y-Ba-Cu-O superconductor bulk were prepared and grinded to 16 mm in diameter and 4 mm in thickness. The improvement of the mechanical properties of Y-Ba-Cu-O superconductor bulk is commerial resin and carbon fiber impregnation.
    We measure the fracture tougness by micro-hardness test. The fracture toughness of Y-Ba-Cu-O bulks with and without resin and carbon fiber impregnation are 0.654MPa×m1/2 and 0.7MPa×m1/2, respectively.
    For trapped-field measurement, we used PPMS model 9000 (maximum field is 9 tesla) at Institute of Physics, Academia Sinica as magnetic source. The maximum trapped-field of prepared Y-Ba-Cu-O superconductor bulk at 15K is 4.916 tesla by extropolation of linear fit of measurements at higher temperatutre. We observed the Y-Ba-Cu-O bulk without resin impregnaiton broke at 7.22 MPa which originated from electromagnetic stress. In the sample with resin and carbon fiber impregnation, internal crack can be observed via 2D trapped-field mapping at 13MPa of electromagnetic stress. So the strength of Y-Ba-Cu-O bulk with resin impregnaiton is about twice of one without resin. We calculated the length of internal crack existed in our Y-Ba-Cu-O bulk is 1.75 mm. SEM image revealed that the cracks exists on Y-Ba-Cu-O (001) internal plane, and the range of length is 1-3mm.
    The CO2 Laser is used to ablate cracks with three kind of length, which are 1mm, 7mm and 12mm respectively. It is articipated that with these known crack length and electromagnetic stress, the fracture toughness can be calculated. And these fracture toughness can then be compared with those data obtained via micro-hardness test. However, the trapped-field at 77K of Y-Ba-Cu-O superconductor was weakened after low velocity (2.286mm/sec) CO2 Laser ablation due to local heating. The trapped-field at 77K will be remained the same by high velocity (571.5mm/sec) CO2 Laser ablation, the “flux jump” phenomenon would occurr during trapped-field measurment. This flux jump phenomenon may be caused by the reduction of the heat conductivity of Y-Ba-Cu-O superconductor by Laser heating. So, the electromagnetic stress is insufficient to cause damage to Y-Ba-Cu-O bulk, which make the calculation of the fracture toughness is not possible.

    摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒 論 1 1.1 前 言 1 1.2 銅氧化物超導塊材的研究與應用 2 1.3 研究目的 3 第二章 理論回顧 4 2.1 超導體的原理與特性[3] 4 2.1.1 超導特性與溫度、磁場、電流關係 4 2.1.2 超導體的分類 5 2.1.3 BCS理論 7 2.1.4 弱接點效應 8 2.1.5 Bean Model 8 2.2 熔融製程(Melt Texture Growth) 10 2.2.1熔融製程基本原理 10 2.2.2 熔融製程的改良 11 2.2.3 超導體在熔融製成中引入的內部殘留應力 11 2.3 充氧退火製程 13 2.3.1 超導體在充氧退火時引入的內部缺陷[9] 14 2.4 超導體內部應力計算 14 2.4.1 超導體場冷充磁退場後內部應力計算[10] 14 2.4.2退場過程中最大應力隨外加磁場之變化[10] 18 2.4.3 應力方向與裂縫成長方向的關係[11] 20 2.5 包覆環氧樹脂與碳纖維對機械性質的改善 20 2.5.1 被覆樹脂與碳纖維對於塊材機械性質的影響 20 2.5.1.1 彎曲強度[12] 21 2.5.1.2 拉伸強度 21 2.5.2 被覆樹脂與碳纖維布對於塊材在熱循環應力的改善 22 2.5.3 填充鋁線與和合金對於超導體導熱性質的提升[2] 22 第三章 實驗步驟 44 3.1 實驗步驟 44 3.2 實驗材料準備 44 3.2.1 YBCO單晶粒超導塊材 44 3.2.2 環氧樹脂與碳纖維布 44 3.3塊材披覆與前置工作 45 3.3.1批覆前處理步驟[16] 45 3.3.2樹脂調配與氣體粗抽步驟[16] 46 3.3.3 樹脂與碳纖維布披覆[16] 46 3.4 雷射切割裂縫 47 3.5 二維表面磁場密度量測 48 3.6擄獲磁場強度量測 50 第四章 實驗結果與討論 60 4.1 超導試片之最大擄獲磁場量測 60 4.2 利用微硬度試驗量測破壞韌性 65 4.3 披覆處理對超導試片擄獲磁場與機械性質之影響 70 4.3.1 披覆處理對超導試片擄獲磁場的影響 70 4.3.2 披覆處理對超導試片機械性質的影響 78 4.4 試片內部裂縫長度 84 4.5 以已知裂縫長度推算破壞韌性 86 4.5.1 雷射切割對擄獲磁場(77K下)之影響 86 4.5.2 雷射切割對機械性質之影響 103 第五章 結論 117 參考文獻 119

    1. M.K. Wu, J.R. Ashburn and C.J. Torng, “Superconductivity at 93K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure”, Phys. Rev. Lett.,Vol. 58, No. 9 (1987) 908-910
    2. M. Tomita, and M. Murakami, “High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29K”, Nature Vol. 421 (2003) 517-520
    3. M. Cyrot and D. Pavuna, “Introduction to Superconductivity and High-Tc Materials”, World Scientific, 1992.
    4. 陳詩芸, “添加物對單晶粒釤鋇銅氧超導體微結構及釘紮特性研究”, 國立成功大學材料科學與工程研究所博士論文, 92年12月。
    5. C. P. Bean, Rev. Mod. Phys. 36 (1964) P.31.
    6. E. M. Gyrogy, R. B. van Dover, K.A. Jackson, L.F. Schneemeyer and J.V. Waszcazk, “Anisotropic critical currents in YBa2Cu3O7 analyzed using an extended Bean model”, Appl. Phys. Lett. 55, Issue 3 (1989) 283-285.
    7. S.Jin, T.H. Tiefel, R.C. Sherwood, M.E. Davis, R.B. van Dover, G.W. Kammlott, R.A. Fasttnacht and H.D. Keith, “High critical currents in Y-Ba-Cu-O superconductors”, Appl. Phys. Lett, Vol. 52 Issue 24 (1988) 2074-2076.
    8. D. Isfort, X. Chaud, R. Tournier and G. Kapelski, “Cracking and Oxygenation of YBaCuO bulk Supeconductors: application to c-axis elements for current limitation”, Physica C 390 (2003) 341-355.
    9. N. Sakai, S.J. Seo, K. Inoue, T. Miyamoto and M. Murakami, “Mechanical properties of RE-Ba-Cu-O bulk superconductors”, Physica C 335 (2000) 107-111
    10. Y. Ren, R. Weinstein, J. Liu, R.P. Sawh and C. Foster, “Damage caused by magnetic pressure at high trapped field in quasi-permanent magnets composed of melt-textured Y-Ba-Cu-O superconductor”, Physica C 251 (1995), 15-26
    11. Tom H Johansen, “Flux-pinning-induced stress and magnetostriction in bulk superconductors”, Supercond. Sci. Technol. 13 (2000) 121-137
    12. M. Tomita, and M. Murakami, “Mechanical properties of bulk superconductors with resin impregnation”, Supercod. Sci. Technol. 15 (2002) 808-812
    13. M. Tomita, M. Murakami and K. Yoneda, “Improvement in the mechanical properties of bulk YBCO superconductors with carbon fibre fabrics”, Supercond. Sci. Technol. 15 (2002) 803-807
    14. M. Tomita, M. Murakami, “Stablility of the mechanical properties of bulk RE-Ba-Cu-O”, Physics C 354 (2001) 358-362
    15. M. Tomita, M. Murakami, “Effect of resin layer on the thermal stress of bulk superconductors”, Physica C 392-396 (2003)493-498.
    16. 賴文健, “樹脂披覆YBCO高溫超導體擄獲磁場能力之研究”, 國立成功大學材料科學與工程研究所碩士論文, 94年6月。
    17. 戰國, “單晶粒Y-Ba-Cu-O高溫超導體之製程研究”, 國立成功大學材料科學與工程研究所碩士論文, 86年6月。
    18. A.S. Raynes, S.W. Freiman, F.W. Gayle and D.L. Kaiser, “Fracture toughness of YBCO single crystals: Anistropy and twinning effects”, J. Appl. Phys, Vol. 70, No.10, 15 Nov. 1991, 5254-5257
    19. M. Tomita, M. Murakami, K. Itoh and H. Wada, “Mechanical properties and field trapping ability of bulk superconductors wit resin impregnation”, Supercond. Sci. Technol. 17 (2004) 78-82
    20. 吳采蓉, “樹脂與碳纖維布披覆對高溫超導塊材YBCO機械性質的影響”, 國立成功大學材料科學與工程研究所碩士論文, 93年6月。
    21. T. Okudera, A. Murakami, K. Katagiri, K. Kasaba, Y. Shoji, K. Noto, N Sakai and M. Murakami, “Fracture toughness evaluation of YBCO bulk superconductor”, Physica C 392-396 (2003) 628-633
    22. Y.T. Xing, Y.Z. Wang, H. Tang, Z.Q. Yang, X.D. Su, Z.Y. Jia and L. Huap, “Flux jump in Y1-xNdxBa2Cu3O7-y superconductors prepared by the MTG method”, Physica C 337 (2000) 200-203

    下載圖示 校內:2009-02-14公開
    校外:2009-02-14公開
    QR CODE