簡易檢索 / 詳目顯示

研究生: 陳幸慧
Chen, Hsin-hui
論文名稱: 以藍綠菌Thermosynechococcus sp. CL-1固碳與生質潛能組成分析之研究
CO2-fixation by a Cyanobacterial strain, Thermosynechococcus sp. CL-1, and its Potential Bioenergy Composition Analysis
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 190
中文關鍵詞: 二氧化碳碳水化合物氮限制生質能源脂質藍綠菌
外文關鍵詞: Carbohydrate, Lipid, Nitrogen deficiency, Cyanobacterium, Carbon dioxide, Biofuel
相關次數: 點閱:76下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溫室氣體造成全球暖化的問題日趨嚴重,其中CO2之貢獻度最大,因此針對CO2之減量成為減緩全球暖化的主要目標。此外,近年來石油價格不斷攀升亦透露出能源短缺之訊息,尋找替代能源成為另一項注目焦點。本研究模擬以工廠或火力發電廠所排放煙道廢氣以化學吸收塔將CO2轉換成溶解性無機碳(dissolved inorganic carbon, DIC)後,作為微生物行光合作用之碳源來進行CO2減量之研究,進一步研究生成之生質體作為生質能源之潛力。
    本研究以耐高溫(40-55°C)、高鹼性(pH 7-12)環境之微生物Thermosynechococcus sp. CL-1 (TCL-1)作為研究之光合菌種。首先以批次實驗選擇最適之氮源種類(硝酸根和銨根離子),結果發現TCL-1在以硝酸根作為氮源下有較大的比生長速率(2.5 d-1),因此做為連續實驗中進流之溶解性無機氮源(dissolved inorganic nitrogen, DIN)。本研究在連續式培養方面,以工作體積一升之小型光合反應器、光照10-15 klx、光照時間24 h d-1及溫度50°C,探討TCL-1在不同DIC、DIN、溶解性無機磷源(dissolved inorganic phosphorous, DIP)濃度以及不同稀釋率(dilution rate, D)下之生長狀況、固碳效率以及細胞組成(碳水化合物、脂質、蛋白質)及熱值之變化及產量。
    在控制pH = 9.5、進流DIC濃度為9.4 mM及D = 0.06 h-1之條件下,其固碳效率可達79%,相較於未控制pH值時,僅有36%;另外,在不同進流DIC濃度方面,固碳效率皆小於40%。進而降低稀釋率(D = 0.036 h-1),發現其固碳效率可提昇至50%左右。
    在細胞組成方面,TCL-1在進流兩倍濃度之培養基時,細胞脂質含量可達約30%,因此,可得到較高之脂質產量約為513 mg L-1 d-1,且由脂肪酸種類分析可知,對發展生質柴油較有利。而在進流低氮濃度條件中,可發現TCL-1的碳水化合物含量確實有明顯之增加。另外,當進流DIN濃度由一較高值條件降低至一極低濃度之條件,其碳水化合物之含量尤其有明顯之增加,如:當進流DIN濃度由11.6 mM變成0.7 mM時,其碳水化合物含量由20%增加至53%。相反地,當進流DIN濃度由一極低值增加至一較高濃度時,其碳攝取率與細胞產量皆有明顯增加,如:DIN濃度由0.7 mM變成2.9 mM時,其細胞產量可由383增加至2,557 mg L-1d-1。因此,這樣突躍式的操作,應有助於固碳效率及生質燃料前驅物質的產生。另外,TCL-1在不同條件培養下之熱值約介於5,000-5,500 kcal kg-1,並無明顯之差異。在細胞金屬含量方面可發現,在進流兩倍培養基與低氮濃度之條件下,其Fe、Mg、及Ca之含量有顯著增加。
    在各條件培養下之細胞組成回收率方面,計算脂質、碳水化合物及蛋白質之總含量,皆約為60-80%。若以氮含量推估其蛋白質含量,則回收率可提升至100%左右。推測溼式化學法推估可能低估蛋白質含量,可能係細胞水解不完全造成染劑無法與蛋白質完全螯合所造成。

    Some studies indicated photosynthetic microorganisms have higher photosynthetic efficiencies than plants and can produce more lipid or carbohydrate under N-limitation, hence can be a candidate to reduce global warming and produce bio-erengy. In this study, dissolved inorganic carbonate (DIC), prepared with carbonate and bicarbonate, was used as C source of photosynthetic microorganism to simulate DIC absorbed from flue gas in a scrubber. The scrubber solution from flue gas is hot and alkaline, hence a cyanobacterial strain, Thermosynechococcus sp. CL-1 (TCL-1), can grow well under alkaline (pH 7-12) and thermal conditions (40-55°C), was choiced as the candidate in this study.
    Two types of dissolved inorganic nitrogen (DIN) were used (nitrate and ammonia) for comparison on growth rate and cell production of TCL-1 in a batch culture. The result shows that nitrate as N source have a higher specific growth rate (2.5 d-1) and maximal cell mass, the continuous culture of TCL-1 with nitrate as N source in an 1L photo-bioreactor was carried out at 50°C and light intensity of 10-15 klx. The operating parameters were influent DIC concentration, DIN concentration, dissolved inorganic phosphorous (DIP) concentration, medium nutrients concentration and dilution rate.
    With respect to the C-uptake at 0.06 h-1 of dilution rate, the highest efficiency at 9.4 mM DIC is 79% at pH 9.5 and much higher than that of uncontrolled pH test (36%). Regarding various influent DIC concentrations, the C-uptake efficiencies are all lower than 40%. However, the efficiency increases to 50% as the dilution rate decreases from 0.06 to 0.036 h-1.
    The maximal lipid content and cell production of TCL-1 are about 30 % and 513 mg L-1 d-1 at two-fold influent medium concentration respectively, hence the cultivation under this condition has a great potential to produce biodiesel. Regarding the N-limitation, the carbohydrate content increases significantly as influent DIN concentration is operated from the control to extreme low case. For instance, carbohydrate content increases from 20 to 53% as DIN concentration decreases from 11.6 to 0.7 mM. Additionally, C-uptake efficiency and cell production increases obveriously as the DIN concentration increases from extreme low to higher one. For example, cell production increases from 383 to 2,557 mg L-1 d-1 as the DIN concentration increases from 0.7 to 2.9 mM at influent DIC concentration of 113.2 mM. Consequently, the “shock” operation for TCL-1 seems to be benefit on carbon bio-fixation and bio-fuel precursors production.
    The recoveries of cellular components which were analyzed by wet chemistry methods are between 60% and 80% in the present study. However, the recoveries are all about 100% when we estimated the protein content by N content of cell. We suppose TCL-1 can not be completely hydrolyzed by wet chemistry method, hence lower recovery of protein is obtained.
    The calorific value of all cases ranges between 5,000 and 5,500 kcal kg-1 in this study. Additionally, the contents of Fe, Mg and Ca under two-fold medium concentration and N-limitation cases are much higher than others.

    摘要 I Abstract III 目錄 VI 表目錄 XII 圖目錄 XIV 第一章 前言 1 1-1 研究動機 1 1-2 研究目的 7 第二章 文獻回顧 9 2-1 溫室效應 9 2-1-1 溫室氣體 10 2-2 二氧化碳處理方式介紹 12 2-2-1 物理處理法 13 2-2-2 化學處理法 14 2-2-3 生物處理法 18 2-3 替代能源 21 2-3-1 太陽能 22 2-3-2 風力能 23 2-3-3 海洋能 24 2-3-4 生質能 25 2-4 酸鹼平衡 28 2-4-1 酸鹼平衡計算法 28 2-4-2 酸鹼平衡圖解法 29 2-5 細胞活性之觀察 31 2-5-1 螢光染劑對細胞之應用 31 2-5-2 流式細胞儀 31 2-6 光合微生物 34 2-6-1 光合作用 34 2-6-2 影響光合微生物生長之環境因子 40 2-6-3 生長曲線及測定 43 2-6-4 生長模式簡介 45 2-7 培養環境探討 47 2-7-1 培養系統 47 2-7-2 生化反應器的介紹 48 第三章 實驗材料及方法 52 3-1 研究架構 52 3-2 實驗藥品、器材及分析設備 54 3-2-1 培養基藥品清單 54 3-2-2 其他藥品 54 3-2-3 曝氣實驗設備 54 3-2-4 週邊設備 55 3-2-5 樣品分析設備 55 3-2-6 其他實驗設備 57 3-3 實驗流程 59 3-4 實驗菌種來源 60 3-5 菌種保存 61 3-5-1 低溫保種 61 3-5-2 一般保種 61 3-6 小量活性培養 62 3-7 生長曲線之測定 63 3-7-1 細胞密度(cell mass)之量測 63 3-7-2 細胞數目(cell number)之量測 64 3-8 反應器設計及實驗操作 65 3-8-1 批次實驗 65 3-8-2 連續實驗 68 3-9 取樣 73 3-10 掃瞄式電子顯微鏡之觀察(SEM) 74 3-10-1 樣品前處理 74 3-10-2 樣品之觀察 74 3-11 細胞活性觀察 75 3-12 細胞組成分析 76 3-12-1 總脂質量(lipid)分析 76 3-12-2 脂肪酸種類分析 76 3-12-3 碳氫化合物(carbohydrate)分析 76 3-12-4 蛋白質(protein)分析 77 第四章 結果與討論 78 4-1 光合微生物之特性 78 4-2 批次實驗 80 4-2-1 TCL-1在不同初始無機碳(DIC)濃度下之生長狀況 80 4-2-2 TCL-1以硝酸根作為無機氮源(DIN)在不同初始濃度下之生長狀況 83 4-2-3 TCL-1以銨根為無機氮源(DIN)在不同初始濃度下之生長狀況 86 4-2-4 TCL-1在不同氮源種類下之比較 89 4-3 連續實驗 90 4-3-1 TCL-1在不同DIC、DIP濃度及兩種培養基倍率下之生長狀況 92 4-3-2 TCL-1在不同DIN之生長狀況 115 4-3-3 TCL-1在不同進流速率(稀釋率)之生長狀況 130 4-4 TCL-1應用面之探討 138 4-5 細胞組成含量應用之探討 140 4-6 探討TCL-1於不同培養條件下之細胞活性狀況 142 4-7 與他人研究之比較 145 4-7-1 生長特性之比較 145 4-7-2 固碳及生質潛能之比較 147 第五章 結論與建議..............................................................................153 5-1 結論..........................................................................................153 5-2 建議..........................................................................................156 參考文獻.......................................................................................................157 附錄一、鹼液吸收二氧化碳之DIC 濃度..................................................167 附錄二、培養基之組成...............................................................................168 附錄三、TCL-1 之型態...............................................................................171 附錄四、碳源濃度消耗與pH 值變化之關係............................................174 附錄五、脂肪酸分析...................................................................................176 XI 附錄六、TCL-1 之細胞活性分析...............................................................183

    丁澤民等,『生物學』,藝軒圖書出版社,1998年。
    工業技術研究院能源與資源研究所,溫室氣體統計,2007年。
    中華民國環境工程學會,『環境工程概論』, 2002年。
    田中正之著,石廣玉、李昌明譯,『地球在變暖』,明文出版社,1995年。
    行政院主計處,溫室氣體減量概況,2006年6月5日。
    行政院環保署,全國環境水質監測資訊網,2008。
    http://wqshow.epa.gov.tw/
    行政院環境保護署空保處,2006年9月20日。
    李文哲,『以高溫高鹼度環境培養微藻固定模擬吸收塔之吸收液中CO2之研究』,國立成功大學環境工程研究所碩士論文,2006年。
    李文峰,『以MEA溶液去除煙道氣中二氧化碳之研究』,國立成功大學環境工程研究所碩士論文,2002年。
    林俊成、李國忠,『森林資源碳吸收效果與京都議定書』,台大森林學研究所,1999年。
    林健三,環境工程概論,2002年。
    邱耀興,『小球藻固碳培養條件之探討』,長庚大學化工暨材料工程研究所碩士論文,2003年。
    高宜廷,『新型光生化反應器之開發與其在單細胞藻類培養上之應用』,國立清華大學化學工程研究所碩士論文,2001年。
    康育豪,『深海掩埋液態CO2技術之最佳注入深度及液滴大小探討』,國立交通大學環境工程研究所碩士論文,2000年。
    康宗仁,『永磁式同步發電機之風力發電功率控制系統之研製』,國立台灣科技大學電機工程系碩士論文,2004年。
    張惟閔,『微藻培養於光生化反應器之系統開發』,國立清華大學化學工程研究所碩士論文,2005年。
    張義宏,『利用本土性小球藻固定二氧化碳之技術開發』,國立台灣大學農業化學研究所博士論文,2001年。
    許峻賓,『巴西能源政策』,能源報導,經濟部能源局,2006年4月。
    郭明朝、陳威希、魏華洲、門立中,『開拓生質能源新世紀』,科學月刊,2006年8月。
    陳重修,『二氧化碳與二氧化硫整合性控制技術之研究』,國立台灣大學環境工程研究所碩士論文,2000年。
    陳重修,『二氧化碳與二氧化硫整合性控制技術之研究』,國立台灣大學環境工程研究所碩士論文,2000年。
    陳啟平,『氣動式生化反應器之設計,及其在藻類培養的應用』,國立清華大學化學工程研究所碩士論文,1996年。
    陳漢烱、李宏台、盧文章,『動手種出生質柴油田』,科學月刊,2006年8月。
    黃汝賢等,『環工化學』,三民書局,1999年。
    黃定國,『多重網狀導流板之氣舉式反應器的設計及其在幾丁聚醣生產上之應用』,國立清華大學化學工程研究所碩士論文,1999年。
    黃煥翔,『熱電共生太陽能發電系統研製』,國立臺灣大學機械工程學研究所碩士論文,2001年。
    黃騰德,『以氫氧化鈣再生煙道氣中二氧化碳吸收劑—氨水溶液之研究』,國立成功大學環境工程研究所碩士論文,2003年。
    經濟部工業局,產業溫室氣體減量資訊網,2007年。
    經濟部工業局工業技術研究院,『溫室效應氣體減量技術推廣與輔導計劃』,2002年12月31號。
    經濟部能源局,中華民國96年能源統計手冊,2007年。
    經濟部能源局,中華民國96年能源統計手冊,2008年。
    葉俊良,『在光生化反應器中以二階段策略培養微藻生產油脂之研究』,國立成功大學化學工程研究所碩士論文,2006年。
    葉俊良,『在光生化反應器中以二階段策略培養微藻生產油脂之研究』,國立成功大學化學工程研究所碩士論文,2006年。
    賈有元,『綠藻Chlorella pyrenoidosa NCHU-6之最適異營培養條件暨培養方法之研究』,國立中興大學食品科學研究所碩士論文,2004年。
    潘忠政,『整合鹼液吸收及光合作用以固定二氧化碳』,大葉大學環境工程研究所碩士論文,2001年。
    鄭玟芩,『海洋微藻在氮源限制下固定CO2與生質潛能組成之研究』,國立成功大學碩士論文,2008年。
    蕭吉良,『以氨水溶液於填充塔中去除二氧化碳之研究』,國立成功大學碩試論文,2005年。
    蕭茂修,『以海洋微藻固定CO2並作為生質能源之研究』,國立成功大學碩士論文,2007年。
    聯合報,『黑潮發電 台灣能源救世主?』,2009年1月7號。
    藍大鈞,『藻類固定二氧化碳與藻體的利用研究』,長庚大學化學工程研究所碩士論文,2001年。
    蘇宗振,『打造綠色油田』,能源報導,經濟部能源局,2006年4月。
    蘇惠美,『餌料生物之培養與利用』,台灣省水產試驗所東港分所發行,1999年。
    顧洋,『氣候變遷對工業發展之影響,地球環境變遷—地球溫暖化、溫室效應氣體對策研討會論文集』,p.99-103,1995年。
    『National Geographic中文版』,2004年9月號。
    『美國《時代雜誌》中文解讀版』,p.74-80,2004年8月。
    Abanades, J. C. and D. Alvarez, “Conversion limits in the reaction of CO2 with lime. “, Energy & Fuels, 17, p. 308-315, 2003.
    Allen, M. B., “Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte“, Journal of Archly ffir Mikrobiologie, 32, p.270-277, 1959.
    Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, IPCC(Intergovernmental Panel on Climate Change),2007年2月2日。
    Appenzeller, T.,『National geographic中文版』, 2004, 2月。
    Atomi, H., “Microbial Enzymes Involved in Carbon Dioxide Fixation”, Journal of Bioscience and Bioengineering, 94, p.497-505, 2002.
    Bai, H. and Yeh, A. C., “Comparison of Ammonia and Monoethanolamine Solvents to Reduce CO2 Greenhouse Gas Emissions”, The Science of Total Environment, 228, p.121-133, 1999.
    Becker, E. W., “Microalgae: Biotechnology and Microbiology”, the Press Syndicate of the University of Cambridge, 1994.
    Binaghi, L., A. Del Borghi, A. Lodi, A. Converti and M. Del Borghi, “Batch and Fed-batch Uptake of Carbon Dioxide by Spirulina platensis”, Journal of Process Biochemistry, 38, p.1341-1346, 2003.
    Boulos, L., M. Prevost, B. Barbeau, J. Coallier and R. Desjardins, “Live / Dead BacLightTM :application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water.”, Journal of Microbiological Method, 37, p.77-86, 1999.
    Breeuwer, P., J. L. Drocourt, N. Bunschoten, M. H. Zwietering, F. M. Rombouts and T. Abee, “Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfulorescein diacetate by intracellular exterases in saccharomyces-cerevisiae, which result in accumulation of fluorescent produc.”, Applied and Environmental Microbiology, 61, p.1614-1619, 1995.
    Chang, E. H. and Yang, S. S., “Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide”, Botanical Bulletin of Academia Sinica, 44, p.43-52, 2003.
    Carvalho, A. P. and Malcata, F. X., “Transfer of Carbon Dioxide within Cultures of Microalgae: Plain Bubbling versus Hollow-Fiber Modules”, Biotechnology Progress, 17, p.265-272, 2001.
    Chrzanowski, T. H., R. D. Crotty, J. G. Hubbard and R. P. Welch, “Applicability of the fluorescein diactate method of detecting active bacteria in fresh water.” Microbial Ecology, 10, p.179-185, 1984.
    D’Souza, F. M. L., and Kelly, G. J., ” Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica)on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus)larvae”, Journal of Aquaculture, 181, p.311-329, 2000.
    Daly, R. I., L. Ho and J. D. Brookes, “Effect of chlorine on microcystis aeruginosa cell integrity and subsequent microcys tin release and degradation.”, Environmental Science & Technology, 41, p.4447-4453, 2007.
    Delgiorgio, P.A., Y. T. Prairie and D. F. Bird, “Coupling between ratesof bacterial production and the abundance of metabolically active bacteria inlakes, enumerated using CTC reduction and flow cytometry.”, Microbial Ecology, 34, p.144–154, 1997.
    Dorsey, J., C. M. Yentsch, S. Mayo and C. Mckenna, “rapid analytical technique for the assessment of cell metabolic-activity in marine microalgae.”, Cytometry, 10, p.622-628, 1989.
    Duhamel, S. and S. Jacquet, “Flow cytometric analysis of bacteria- and virus-like particles in lake sediments.” Journal of Microbiological Methods, 64, p.316-332, 2006.
    Hatziargyriou N.and Vervos A., “Wind power development in Europe”, Proceedings of the IEEE, 89, p 1765-1782, 2001.
    Hobbie, J. E., R. J. Daley and S. Jasper, “Use of nucleopore filters for counting bacteria by fluorescence microscopy.” Applied and Environmental Microbiology, 33, p.1225-1228, 1977.
    Hsueh, H. T., Chu, H., and Chang, C. C.,“Identification and Characteristics of a Cyanobacterium Isolated from a Hot Spring with Dissolved Inorganic Carbon”, Journal of Environmental Science and Technology, 41, p.1909-1914, 2007.
    Hwang, J. Y., ”Low Cost BioScrubber for Greenhouse Gas Control-Topical Report for Phase I”, DE-AC26-98FT40414, 1999.
    Ikariya, T., P. G. Jessop, M. Tokunaga and R. Noyori, “Homogeneous Hydrogenation of Carbon-Dioxide with Transition-Metal Complexes”, Journal of Synthetic Organic Chemistry Japan, 52, p.1032-1043, 1994.
    Illman, A. M., A. H. Scragg and S. W. Shales, “Increase in Chlorella strains calorific values when grown in low nitrogen medium”, Enzyme and Microbial Technology, 27, p.631-635, 2000.
    Jacob-Lopes, E., C. H. G. Scoparo, L. M. C. F. Lacerda and T. T. Franco, “Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors”, Chemical Engineering and Processing, 48, p.306-310, 2009.
    Kochert, G., “Carbohydrate determinationby the phenol-sulfuric acid method”, in Handbook of Phycological Methods-Physiological and Biochemical Methods, J. A. Hellebust and J. S. Craigie(ed.), Cambridge Univ. Press, Cambridge, p.95-97, 1978.
    Klopfenstein, W. E. J., Am. Oil Chem. Soc., 62, p.1029-1031, 1985.
    Kochert, G., “Protein determination by dye binding”, in Handbook of Phycological Methods-Physiological and Biochemical Methods, J. A. Hellebust and J. S. Craigie(ed.), Cambridge Univ. Press, Cambridge, p.91-93, 1978.
    Landsgrud, S.and Sundheim, G., “Flow cytometry for rapid assessment of viability after exposure to a quaternary ammonium compound.”, Journal of Applied Bacteriology, 81, p.411–418, 1996.
    Maeda, K., M. Owada, N. Kimura, K. Omata and I. Karube, “CO2 Fixation from the Flue Gas on Coal-fired Thermal Power Plant by Microalgae”, Journal of Energy Conversion and Management, 36, p.717-720, 1995.
    Martin-Jezequel, V., M. Hildebrand and M. A. Brzezinski, “Silicon Metabolism in Diatoms: Implications for Growth”, Journal of phycology, 36, p.821-840, 2000.
    Michiki, H., “Biological CO2 fixation and utilization project.”, Fuel and Energy Abstracts, 37, p.216-216, 1996.
    Mirón, A. S., García, M.-C. C., Camacho, F. G., Grima, E. M., and Chisti, Y., “Growth and Biochemical Characterization of Microalgal Biomass Produced in Bubble Column and Airlift Photobioreactors: Studies in Fed-batch Culture”, Journal of Enzyme and Microbial Technology, 31, p.1015-1023, 2002.
    Moffat, B. D. and T. W. Snell, “Rapid toxicity assessment using an in-vivo enzyme test for brachionus-plicatilis (rotifera).”, Ecotoxicology and Environmental Safety, 30, p.47-53, 1995.
    Morita, M., Y. Watanabe and H. Saiki, “High Photosynthetical Productivity of Green Microalga Chlorella sorokiniana”, Journal of Applied Biochemistry and Biotechnology, 87, p.203-218, 2000.
    Oswald, W. J., and C. G. Golueke., “Biological Transformation of Solar Energy.”, Adv Appl Microbiol, 2, p.223-262, 1960.
    Queric, N. V., T. Soltwedel and W. E. Arntz, “Application of a rapid direct viable count method to deep-sea sediment bacteria.” Journal of Microbiological Method, 57, p.351-367, 2004.
    Perez-Lopez, R., G. Montes-Hernandez, J. M. Nieto, F. Renard and L. Charlet, “Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere”, Applied Geochemistry, 23, p.2292–2300, 2008.
    Radmer, R. J., and Parker, B. C., “Commercial Applications of Algae – Opportunities and Constraints”, Journal of Applied Phycology, 6, p.93-98, 1994.
    Ratledge, C., “ Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production”, Journal of Biochimie, 86, p.807-815, 2004.
    Raven, P. H. and Johnson G. B., “Biology”, McGraw-Hill, sixth edition, 2002.
    Renaud, S. M., and Parry, D. L., “Microalage for Use in Tropical Aquaculture 2 Effect of Salinity on Growth, Gross Chemical-composition and Fatty-acid Composition of 3 Species of Marine Microalgae”, Journal of applied Phycology, 6, p.347-356, 1994.
    Rippka, R., J. Deruelles, J.B. Waterbury, M. Herdman, and R.Y. Stanier., “Genetic assignments, strain histories andproperties of pure cultures of cyanobacteria”, Journal general Microbiology, 111, p.1-61, 1979.
    Rittmann, B. E., and McCarty, P. L., “Environmental Biotechnology: Principles and Applications”, McGraw-Hill, 2001.
    Rubio, F. C., Fernandez, F. G. A., Perez, J. A. S., Camacho, F. G., Grima, E. M., “Prediction of Dissolved Oxygen and Carbon Dioxide Concentration Profiles in Tubular Photobioreactors for Microalgal Culture”, Journal of Biotechnology and Bioengineering, 62, p.71-86, 1999.
    Sabine, C. L., R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono and A. F. Rios, “The Oceanic Sink for Anthroporgenic CO2.”, Journal of Science, 305, p.362-371, 2004.
    Sakai, N., Y. Sakamoto, N. Kishimoto, M. Chihara and I. Karube, “Chlorella Strains from Hot Springs Tolerant to High Temperature and High CO2”, Journal of Energy Conversion and Management, 36, p.693-696, 1995.
    Schpeper, T., “Bioprocess and Algae Reactor Technology”, Journal of Apoptosis, 1998.
    Sobczuk, T. M., F. G. Camacho, F. C. Rubio, F. G. A. Fernandez and E. M. Grima, “Carbon Dioxide Uptake Efficiency by Outdoor Microalgal Cultures in Tubular Airlift Photobioreactors”, Journal of Biotechnology and Bioengineering, 67, p.465-475, 1999.
    Stumm, W. and Morgan, J. J., “Aquatic Chemistry”, WILEY, third edition, 1996.
    Sukenik, A.and Carmeli Y., “Regulation of Fatty Acid Composition by Irradiance Level in the Eustigmatophyte Nannochloropsis sp.”, Journal of Phycology, 25, p.686-692, 1989.
    Takagi, M., Karseno and T. Yoshida, “Effect of Salt Concentration on Intracellular Accumulation of Lipids and Triacylglyceride in Marine Microalgae Dunaliella Cells”, Journal of Bioscience And Bioengineering, 101, p.223-226, 2006.
    Takeuchi T., U. K., Kobayashi K., Owada M., Karube I., “Carbon Dioxide Fixation by a Unicellular Green Alga Oocystis sp.”, Journal of Biotechnology, 25, p.261-267, 1992.
    Tapie, P., and Bernard, A., “Microalgae Production: Technical and Economic Evaluation”, Journal of Biotechnology and Bioengineering, 32, p.873-855, 1987.
    Terry, K. L., and Raymond, L. P., “System Design for the Autotrophic Production of Microalgae”, Journal of Enzyme and Microbial Technology, 7, p.474-487, 1985.
    Uriarte, I., A. Farías, A. Hawkins and B. Bayne, “Cell characteristics and biochemical composition of Dunaliella primolecta Butcher conditioned at different concentrations of dissolved nitrogen.”, Journal of Applied Phycology, 5, p.447-453, 1993.
    Veldhuis, M. J. W., T. L. Cucci and M. E. Sieracki, “Cellular DNA content of marine phytoplankton using two new fluorochromes: Taxonomic and ecological implications.” Journal of Phycology , 33, p.527-541, 1997.
    Watanabe, Y., and Hall, D. O., “Photosynthetic CO2 Conversion Technologies Using a Photobioreactor Incorporating Microalgae - Energy and Material Balances”, Journal of Energy Conversion and Management, 37, p.1321-1326, 1996.
    Watanabe, Y., J. Delanoue and D. O. Hall, “Photosynthetic Performance of a Helical Tubular Photobioreactor Incorporating the Cyanobacterium Spirulina platensis”, Biotechnology and Bioengineering, 47, p.261-269, 1995.
    Watson, R.T., I.R. Noble, B.Bolin, N.H. Ravindranath, D.J. Verardo, and D.J. Dokken, IPCC (Intergovernmental Panel on Climate Change)第三次評估報告,2001。
    Williams, J. P., and P. A. Merrilees, “The Removal of Water and Nonlipid Contaminants from Lipid Extracts”, Lipids, 5, p.367-370, 1970.
    Yamaberi, K., M. Takagi and T. Yoshida, “Nitrogen depletion for intracellular triacylglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil”, Journal of Marine Biotechnology, 6, p.44–48, 1998.
    Yamaoka, T., Satoh, K. and Katoh, S., “Photosynthetic activities of a thermophilic blue-green alga”, Plant Cell Physiol. 19, p. 943-954, 1978.
    Yamasaki, A., “An Overview of CO2 Mitigation Options for Global Warming-emphasizing CO2 Sequestration Options”, Journal of Chemical Engineering of Japan, 36, p.361-375, 2003.
    Yeh, J. T., Pennline, H. W., “Study of CO2 Absorption and Desorption in a Packed Column”, Energy & Fuels, 15, p.274-278, 2001.
    You, T., and Barnett, S. M., “Effect of Light Quality on Production of Extracellular Polysaccharides and Growth Rate of Porphyridium cruentum”, Biochemical Engineering Journal, 19, p.251-258, 2002.

    下載圖示 校內:2011-06-30公開
    校外:2011-06-30公開
    QR CODE