簡易檢索 / 詳目顯示

研究生: 吳建中
Wu, Chien-Chung
論文名稱: 早產兒能量消耗量測之微型感測器的研製
Design and fabrication of micromachined sensors on energy consumption measurement for premature infants
指導教授: 羅錦興
Luo, Ching-Hsing
李國賓
Lee, Gwo-Bin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 117
中文關鍵詞: 溫度感測器微型流量感測器微型氧氣感測器微型加熱器微機電遠端遙控系統微型能量量測系統氧氣自動量測及校正系統
外文關鍵詞: miniaturized energy consumption measurement syst, automated measurement system, remote control system, micro-flow sensor, MEMS, Indirect calorimeter, micro-heater, micro-oxygen sensor
相關次數: 點閱:99下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於近年來早產兒的的快速增加,根據統計每年在台灣的新生兒中大約有7%是早產兒。由於早產兒的器官發育大都尚未完成,加上早產兒的成長速度相當緩慢,因此如何讓早產兒成長速度加快是一個重要的課題;因此,能夠利用非侵入式並且快速地提供醫護人員判斷其成長狀態的儀器將是首要完成的任務,其中間接熱量計來量測早產兒的能量消耗狀況是一個方法,然而由於傳統的間接熱量計的體積較大而且價錢昂貴,使得無法普遍地應用在臨床及家庭照護上,為了改善這些問題,將感測器微小化並結合積體電路設計技術將量測系統整合成微小的晶片將是一個解決的方法,本論文提出以多個微小型感測器及無線發射模組組合成的微小型能量量測系統為基礎的架構,並且以矽晶元為基材在配合微機電技術設計出微型氧氣感測器;其能夠在150C的溫度下量測氧氣濃度(21%-50%),並且針對不同結構的微型加熱器;包括薄膜型、薄膜加薄矽型、懸橋加薄矽型三種作分析,另外在180C的溫度下,流量感測器在0-10 m/sec的流速下有線性的輸出。除此之外,為了更有效率的量測氧氣濃度,本論文提出一個自動化氧氣量測及校正系統針對其中的氧氣量測部分作探討,藉由網際網路的遠端遙控來監控氧氣感測器的量測環境、測試條件、方法及擷取量測的資料,可以更正確且又有效率的提供研究人員完成氧氣感測器特性的量測。

    Although the conventional indirect calorimeter is a valuable tool, its size and expense prohibits its widespread use in hospitals. Furthermore, its flow-through measurement technique dilutes the respiratory variations, and hence high-precision detection instrumentation is required. These limitations may be overcome by combining MEMS with CMOS circuit design technology to develop an innovative SOC biochip as the basis of a miniaturized energy consumption measurement system. Typically, the system is designed to operate with higher oxygen concentrations. Accordingly, the current thesis deals with the development of mircromachined oxygen sensors capable of sensing higher concentrations of oxygen at a lower operation temperature of 150C. The proposed gas sensors consist of a polysilicon resistor and a sensing metal-oxide film placed on a thermally isolated silicon-nitride membrane or bridge. The sensing film is a tin-oxide sheet, which has been doped with a low concentration of 2wt% Li.
    This thesis involves the development of three different types of oxygen sensors, which are distinguished from each other by the structure of their micro-heaters. The first type is a micro-heater on a silicon nitride membrane, the second type employs a membrane located on a thin silicon layer, and the third type uses a bridge membrane with a thin underlying layer of silicon. At an operating temperature of 150C, the power consumptions of these three sensors are found to be 24 mW, 223 mW and 1240 mW, respectively. The resulting experimental data indicate that the proposed oxygen sensors are capable of detecting oxygen with concentrations ranging from 21% to 50%, and that they exhibit a linear output behavior. At an operating temperature of 180C, the proposed flow sensor demonstrates a linear behavior over a range of flow velocity from 0-10 m/sec.
    Besides, this thesis develops an automated oxygen concentration control and measurement system which can simulate the miniscule respiratory variations of a premature infant and can subsequently establish a suitable oxygen concentration environment to ensure the infant’s well being. The proposed system can also automatically measure the properties of the oxygen sensors, including their resistance characteristics at different oxygen concentrations, the relationship between their sensitivity and the oxygen concentration, and the influence of working temperature and humidity upon their sensitivity. The measurement data is acquired locally and can then be transmitted to a remote PC via the Internet.

    中文摘要 I ABSTRACT II ACKNOWLEDGEMENTS IV TABLE OF CONTENTS V LIST OF TABLES VII LIST OF FIGURES VIII LIST OF EQUATIONS XII NOMEMCLATURE XIII CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 INDIRECT CALORIMETER 1 1.3 OXYGEN GAS SENSORS 5 1.3.1 Electrochemical type oxygen sensors 5 1.3.2 MOSFET-based oxygen sensors 12 1.3.3 Optical type oxygen sensors 13 1.3.4 Paramagnetic oxygen sensors 15 1.3.5 Surface acoustic wave oxygen sensors 16 1.3.6 Metal oxide semiconductor oxygen sensors 18 CHAPTER 2 SENSOR FABRICATION 22 2.1 TECHNIQUES 22 2.1.1 Lithography 23 2.1.2 Ion implantation 23 2.1.3 Etching 25 2.1.4 Lift-off technology 27 2.1.5 Sputtering 27 2.1.6 Wafer Dicing 28 2.1.7 Metallization 28 2.1.8 Wire Bonding 29 2.2 SENSING MATERIALS 29 2.2.1 General Properties of Sensing Materials 30 2.2.2 Thickness effects in SnO2 34 2.2.3 Micro-structure effects in SnO2 35 2.2.4 Metal additives effects in SnO2 36 2.2.5 Temperature effects on SnO2 39 2.3 FABRICATIONS 41 2.3.1 Oxygen sensors 41 2.3.2 Flow sensors 46 CHAPTER 3 EXPERIMENTAL SET-UP 49 3.1 OXYGEN CONTROL AND MEASUREMENT SYSTEM 49 3.1.1 Hardware implementation 51 3.1.2 Software implementation 54 3.2 FLOW VELOCITY CALIBRATION SYSTEM 58 CHAPTER 4 RESULTS AND DISCUSSION 60 4.1 OXYGEN CONTROL AND MEASUREMENT SYSTEM 60 4.2 INFANTS BREATHING SIMULATION SYSTEM 62 4.3 MICRO-HEATERS 65 4.4 OXYGEN SENSORS 71 4.5 TEMPERATURE SENSORS 79 4.6 FLOW SENSORS 80 4.7 INTEGRATED SENSORS 83 CHAPTER 5 CONCLUSIONS 85 5.1 OXYGEN SENSORS AND FLOW SENSORS 85 5.2 OXYGEN CONCENTRATION CONTROL AND MEASUREMENT SYSTEM 86 5.3 FUTURE STUDY 87 REFERENCES 88 GLOSSORY 95 VITA 98

    [1] Barsan, N., and Weimar, U., ”Conduction model of metal oxide gas sensors”, J. Electroceram., 7, 143-167 (2001).
    [2] Brattain, W. H., and Bardeen, J., “Gas adsorption onto a semiconductor”, Bell Syst. Tech. J., 32, 1-12 (1953).
    [3] Carraway, E.R., Demas, J. N., DeGraff, B. A., and J. R. ,Bacon, “Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes”, Anal. Chem., 63, 337-342 (1991).
    [4] Chang, C. Y., and Sze, S. M., “ULSI Technology”, McGraw-Hill companies, Inc., 343-354 (1996).
    [5] Change, S.C., Stetter, J. R., and Cha, C.S., ”Amperometric gas sensors”, Talanta, 40, 461-477 (1993).
    [6] Choi, S. K., Yi, C. W., Cho, W. I., Cho, B. W., Ju, J. B., Yun, K. S., and Yamazoe, N., “A MOSFET type sensor for oxygen sensing using LaF3 as a gate material”, Sensor Actu. B, 13(14), 45-48 (1993).
    [7] Cirera, A., ”New technologies and their characterization for nanostructured SnO2 gas sensor devices”, PhD. Thesis, University of Barcelona, Barcelona, 53-75 (2000).
    [8] Cobos, J. A., “Metal additive distribution in TiO2 and SnO2 semiconductor gas sensor nanostructured materials”, PhD. Thesis, University of Barcelona, Barcelona, 35-56 (2001).
    [9] Diéguez, A., “Structural analysis for the improvement of SnO2-based gas sensors”, Ph. D. Thesis, University of Barcelona, Barcelona, 78-87 (1999).
    [10] Ding, J., McAvoy, T.J., Cavicchi, R.E., and Semancik, S., ”Surface state trapping models for SnO2-based micro-hotplate sensors”, Sensor Actu. B, 77, 597-613 (2001).
    [11] Esashi, M., “Micro flow sensor and integrated magnetic oxygen sensor using it”, IEEE, 34-37 (1991).
    [12] Fung, S.K.H., Tang, Z., Chan, C.H., Sin, K.O., Cheung, W, and Tang, Z., ”Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications”, Sensor Actu. A, 54, 482-487 (1996).
    [13] Geislinger, H., ”Electron theory of thin-film gas sensors”, Sensors Actu. B, 17, 47-60 (1993).
    [14] Guyton, A. C., and Hall, J. E., “TextBook of Medical Physiology 9E”, W. B. Saunders Company Publishing, Philadelphia, 1210-1230 (2000).
    [15] Guyton, A. C., and Hall, J. E., ”TextBook of Medical Physiology 9E”, W. B. Saunders Company Publishing, Philadelphia, 432-452 (2000).
    [16] Heiland, G., and Kohl, D.,”In chemical sensor technology”, 1, ed. T. Seiyama, Kodansha, Tokyo, 15-28. (1989)
    [17] Henrich, V.A., and Cox, P. A., ”The surface science of metal oxides”, University Press, Cambridge, 219-235 (1994).
    [18] Jakoby, B., Ismail, G. M., Byfield , M. P., and Vellekoop, M. J., “A novel moleculary imprinted thin film applied to love wave gas sensor”, Sensors Actu. A, 76, 93-97(1999).
    [19] Kissine, V.V., Voroshilov, S.A., and Sysoev, V.V., ”Oxygen flow effect on gas sensitivity properties of tin oxide film prepared by r.f. sputtering”, Sensor Actu. B, 55, 55-59 (1999).
    [20] Klimat, I., and Wolfbeis, O.S., ”Oxygen-sensitive luminescent materials based on silicone-soluble ruthenium diimine complexes”, Anal. Chem., 67, 3160-3166 (1995).
    [21] Kocache, R., “Applications of oxygen-ion-conducting solid electrolytes”, P.T. Mosely, B.C. Tofiled (Eds.), Solid State Gas Sensors, Adam Hilger, Philadelphia, 1-16 (1987).
    [22] Lee, W.W.-S., Wong, K. Y., and Li, X.-M., “Luminescent dicyanoplatinum(II) complexes as sensors for the optical measurement of oxygen concentrations”, Anal. Chem., 65, 255-258 (1993).
    [23] Liaw, B., Liu, J., and Weppner, W., “Science and technology of zirconia”, American Ceramic Society, Columbus, OH, II, 611-614 (1984).
    [24] Lin, S.C., Luo, C.H., and Yeh, T.-F.,”A calibrating system of O2 Consumption and CO2 production for premature infants”, Rev Sci Instrum, 72(3), 1825-1830 (2001).
    [25] Lin, S.C., Luo, C.H., and Yeh, T.-F., ”Fuzzy oxygen controller for the indirect calorimeter of preterms”, J Med Eng Technol, 25(4), 149-155 ( 2001).
    [26] Lin, S.C., Luo, C.H., and Yeh, T.-F.,” Improve on performance of indirect calorimetry for small preterm infants”, Biomed Eng Appl Basis Commun, 13, 109-115 (2001).
    [27] Liu, S. J., Shen, H. X., and Feng, J. X., “Effect of gas flow-rates on a Clark-type oxygen gas sensor”, Anal. Chim. Acta, 313, 89-92 (1995).
    [28] Lunsford, J.H.,”Mechanism of adsorption of radicals on semiconductors and phenomena of desorption of radicals from hot walls”, Catalyst Rev., 144(147), 751-758 (1973).
    [29] Martinelli, G., and Carotta, M.C., ”Sensitivity to reducing gas as a function of energy barrier in SnO2 thick-film gas sensor”, Sensor Actu. B, 7, 717-720 (1992).
    [30] Matsushima, S., Teraoka, Y., Miura, N., and Yamazoe, N., ”Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors”, Jpn. J. Appl. Phys., 27, 1798-1802 (1988).
    [31] Meixner, H., and Lampe, U., “Metal oxide sensors”, Sensor Actu. B, 33, 192-202 (1996).
    [32] Miau, J. J., Hu, C. C., and Chou, J. H., ” Response of a vortex flow meter to impulsive vibrations”, J. Flow Meas. Instru., 11, 41-49 (2000).
    [33] Morrison, S.R., “Selectivity in semiconductor gas sensors”, Sensors Actu., 12, 425-440 (1987).
    [34] Morrison, S.R., ”The Chemical Physics of Surfaces 2nd edn.”, Plenum Press, New York, 450-471 (1990).
    [35] Obermeier, E., and Kopystynski, P., ”Polysilicon as a material for microsensor applications” , Sensors Actu. A, 30, 149-155 (1992).
    [36] Ogino, H., and Asakura, K., ”Development of a highly sensitive galvanic cell oxygen sensor”, Talanta, 42(2), 305-310 (1995).
    [37] Qiu, L., Hein, S., Obermeier, E., and Schubert, A., ”Micro gas-flow sensor with integrated heat sink and flow guide”, , Sensors Actu. A, 54, 547-551 (1996).
    [38] Sanjines, R., Levy, F., Demarne, V., and Grisel, A, “Some aspects of the interaction of oxygen with polycrystalline SnOx thin films”, Sensor. Actu., B1, 176-182 (1990).
    [39] Sbervegieri, G., ”Gas sensors-principles, operation and developments”, Kluwer Academic Publishers, London, 91-95 (1992).
    [40] Sberveglieri, G., “Classical and novel technologies for the preparation of SnO2 thin-film gas sensors”, Sensor Actu. B, 6, 239-247 (1992).
    [41] Sberveglieri, G., “Gas sensors-principles, operation and developments”, Kluwer Academic Publishers, 122-142 (1992).
    [42] Sberveglieri, G., “Recent developments in semiconducting thin-film gas sensors,” Sensors Actu. B, 23, 103-109 (1995).
    [43] Sberveglieri,G., Faglia, G., Groppelli, S., Nelli, P., and Pereg, C., “Oxygen gas sensing properties of undoped and Li-doped SnO2 thin films”, Sensor Actu. B, 13(14), 117-120 (1993).
    [44] Schierbaum, K. D., Kirner, U. K., Geiger J. F., and Göpel, W., “Schottky-barrier and conductivity gas sensors based upon Pd/SnO2 and Pt/TiO2”, Sensor Actu. B, 4, 87-94 (1991).
    [45] Sharma, R.K., and Bhatnagar, M. C., “Improvement of the oxygen gas sensitivity in doped TiO2 thick films”, Sensor Actu. B, 46, 194-201 (1998).
    [46] Simon, I., Bârsan, N., Bauer, M., and Weimar, U., ”Micromachined metal oxide gas sensors: opportunities to improve sensor performance”, Sensor Actu. B, 73, 1-26 (2001).
    [47] Stewart, N.R., and Nathan, A., ”Flow-rate microsensor modeling and optimization”, Sensors Actu. A, 34, 109-122 (1992).
    [48] Suemasu, T., Kurumiya, Y., and Ishibashi, K., Sensor Actu. B, 13(14), 501-512 (1993).
    [49] Tamaki, J., Maekawa, T., Matsushima, S., Miura, N., and Yamazoe, N., ”Ethanol gas sensing properties of Pd-La2O3-lN2O3 thick-film element”, Chem. Lett., 1 , 477-480 (1990).
    [50] Tiffée, E.I., Härdtl, K.H., Menesklou, W., and Riegel, J., “Principles of solid state oxygen sensors for lean combustion gas control”, Electrochimica Acta, 47, 807-814 (2001).
    [51] Trettnak, W., Kolle, C., Reininger, F., Dolezal, C., O’Leary, P., and Binot, R. A., “Optical oxygen sensor instrumentation based on the detection of luminescence lifetime”, Adv. Space Res, 22(10), 1465-1474 (1998).
    [52] Veltekoop, M. J., “Acoustic Wave Sensors and Their Technology”, Ultrasonics, 36, 7-14 (1998).
    [53] Vetelino, K. A., Story, P. R., Mileham, R. D., and Galipeau, D. W., ”Improved dew point measurements based on a SAW sensor”, Sensor Actu. B, 35, 91-98 (1996).
    [54] Vlachos, D. S., Papadopoulos, C. A., and Avaritsiotis, J.N., “Characterization of the catalyst-semiconductor interaction mechanism in metal-oxide gas sensors”, Sensors Actu. B, 44, 458-461 (1997).
    [55] Watson, J., Ihokura, K., and Coles, G.S.V., ”The tin dioxide gas sensor”, Meas. Sci. Technol., 4, 711-719 (1993).
    [56] Webster, J.G., ”Medical instrumentation: application and design 3E”, John Wiley & Sons, Inc., Canada, 578-592 (1998).
    [57] Weisz, P.B., “Gas adsorption, absorption and desorption”, J. Chem. Phys., 21, 1531-1537 (1953).
    [58] Williams, D. E., “Characterization of Semiconductor Gas Sensors,” in P. T. Moseley, B. C. Tofield (eds.), Solid State Gas Sensors, Adam Hilger, Bristol, 43-59 (1987).
    [59] Wu, C.C., Chen, M.H., Luo, C.H., and Lee, G.-B., ”Design and fabrication issues on micromachined oxygen sensors for miniaturized energy consumption measurement systems”, Sensors Mater, 15(7) , 341-360 ( 2003).
    [60] Wu, C.C., Lee, G.-B., and Luo, C.H, ”The application of an automated oxygen concentration control and measurement system to a miniaturized energy consumption measurement system using resistive-type oxygen gas sensors”, Biomed Eng Appl Basis Commun, 16(1), 22-31 (2004).
    [61] Wu, C.C., Lee, G.-B., Chen, M.H., and Luo, C.H., ”Micromachined oxygen gas sensors for microscopic energy consumption measurement systems”, Journal of Medical Engineering & Technology, (2004) (accepted)
    [62] Xu, C., Tamaki, J., Miura, N., and Yamazoe, N., “Correlation between gas sensitivity and crystallite size in porous SnO2-based sensors”, Chem Lett., 441-444 (1990).
    [63] Xu, C., Tamaki, J., Miura, N., and Yamazoe, N., “Grain size effects on gas sensitivity of porous SnO2-based elements”, Sensors Actu. B, 3, 147-155 (1991).
    [64] Yamazoe, N., “New approaches for improving semiconductor gas sensors”, Sensors Actu. B, 5, 7-19 (1991).
    [65] Yeh, T.F., Lilien, L.D., Leu, S.T., and Pildes, R.S., ”Increased O2 consumption and energy loss in premature infants following medical care procedures”, Bio Neonate, 46, 157-162 (1984).
    [66] Yu, S., Wu, Q., Azar, M.T., and Liu, C.C., “Development of a silicon-based yttria-stabilized-zirconia (YSZ), amperometric oxygen sensor”, Sensors Actu. B, 85, 212-222 (2002).
    [67] Zadeh, K. K., Li , Y. X., Wlodarsk, I. W., and Brennan, F., “A layered structure surface acoustic wave for oxygen sensing”, IEEE, 202-205 (2000).
    [68] Zoppi, G., Luciano, A., Cinquetti, M., Graziani, S., and Bolognani, M., “Respiratory quotient changes in full term newborn infants within 30 hours from birth before start of milk feeding”, Eur J Clin Nutr , 52, 360-362 (1998).

    下載圖示 校內:2005-05-19公開
    校外:2005-05-19公開
    QR CODE