| 研究生: |
黃大榮 Huang, Da-Rong |
|---|---|
| 論文名稱: |
無線區域網路及數位電視寬頻調諧器之差動CMOS RFIC的設計研究 Research on Differential CMOS RFICs for WLAN and DTV Broadband RF Tuner Applications |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 混波器 、低雜訊放大器 、無線區域網路 、數位電視調諧器 |
| 外文關鍵詞: | LNA, mixer, WLAN, DTV tuner |
| 相關次數: | 點閱:86 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為兩大部分,第一部分是研製應用於802.11a WLAN接收機之5.7GHz CMOS差動低雜訊放大器及雙平衡式混波器RFIC。第二部分是研製應用於數位電視射頻調諧器的CMOS射頻前端(75Ω系統)RFIC,包括寬頻可調增益差動低雜訊放大器及寬頻雙平衡式混波器。研製之RFIC均使用TSMC 0.18μm 1P6M CMOS製程,晶片量測皆採用打鎊線至PCB測試板上進行。
5.7GHz可調增益差動低雜訊放大器量測所得增益可由11.8dB調整至0dB,雜訊指數小於4.5dB,input P1dB為-14dBm;雙平衡混波器量測所得轉換損耗為8.6dB,雜訊指數為14.3dB,input P1dB為3dBm。
數位電視射頻調諧器的40~900MHz寬頻可調增益差動低雜訊放大器,在輸入及輸出使用50轉75Ω之阻抗轉換衰減器及平衡器以轉換成50Ω單端系統來量測。論文介紹兩種不同調整增益方式設計之LNA RFIC,以改變源極退化(source degeneration)來調整增益並增加線性度LNA電路的設計量測結果為;增益可由20.8±1.6調整至-15.5±2.8dB,雜訊指數小於4.5dB,input P1dB@high-/low-gain mode為-19.8~-22.7/-11~-13.6dBm。寬頻雙平衡混波器量測結果為,轉換損耗為2.8±1dB,雜訊指數為12.9~16.7dB,input P1dB為-1.9~-3.8dBm。要注意的是,混波器為考量到下一級之SAW filter之輸入阻抗,而將IF輸出阻抗設計為200Ω;但量測儀器為50Ω單端系統,故在混波器IF端接上balun來量測,與模擬相比較,推斷轉換增益若在真正的使用環境下(200Ω IF-load)可能會提高約6dB左右。整合低雜訊放大器及混波器為單一晶片之40~900MHz射頻前端RFIC的量測結果為,增益約17.5±2.9dB(with 50ΩIF-load),雜訊指數小於6.7dB,input P1dB 約-24~-20.6dBm。16QAM OFDM數位調變之量測結果為,EVM = 0.8/0.7/0.7% @ 40/500/900MHz,靈敏度約為-90.7dBm(@code-rate=1/2)及 -85.6dBm(@code-rate=7/8)。
另外本論文設計之一全積體化2.4/5.7GHz同時共用雙頻帶CMOS差動低雜訊放大器及一5.7GHz WLAN CMOS射頻接收機晶片(包括低雜訊放大器、混波器、頻率合成器)的模擬結果置於附錄中。
This thesis presents the research on differential CMOS RFICs for the 5GHz 802.11a WLAN receiver and DTV RF tuner applications. The RFICs are fabricated by a TSMC standard 0.18μm CMOS process. The circuit measurement is performed using a FR-4 PCB test fixture. The 5GHz receiver CMOS RF front-end includes a differential LNA with gain control and a double-balanced mixer. The RF (5.725 to 5.825 GHz) is downconverted to a 480 MHz IF. The LNA exhibits a gain of 11.8dB, noise figure less than 4.5dB, input P1dB of -14dBm, and gain tuning range of 11.8 dB. The power consumption is 19.8 mW at VDD = 1.8 V. The mixer exhibits a conversion loss of 8.6dB, noise figure of 14.3dB, and input P1dB of 3dBm. The power consumption is 5.4 mW at VDD = 1.8 V.
The broadband CMOS differential RFIC for the DTV tuner RF front-end includes a broadband differential LNA (BDLNA) with gain control and a broadband double-balanced mixer. The RF frequency to the DTV tuner ranging from 40 to 900MHz is up-converted to a 1220MHz 1st IF. The BDLNA (40 to 900MHz) is designed with 75Ω/75Ω differential input/output impedance and exhibits a gain of 20.8±1.6dB, noise figure less than 4.5dB, input P1dB@high-/low-gain mode of -19.8~ -22.7/-11~-13.6dBm, and gain tuning range of about 36 dB. The power consumption is 43.2 mW at VDD = 1.8 V. The broadband mixer exhibits a conversion loss of 2.8±1dB, noise figure of 12.9~16.7dB and input P1dB of -1.9~-3.8dBm. The power consumption is 7.2 mW at VDD = 1.8 V. It is noted that the IF output is designed with a 200Ω load to accommodate the input impedance of the IF SAW filter. Since the measurement is performed with a 50Ω system, compared with the simulation result, the conversion gain of the mixer may increase for about 6 dB when connected to a 200Ω IF load. The integrated RF front-end chip exhibits a conversion gain of 17.5±2.9dB, noise figure less than 6.7dB, input P1dB of -24~-20.6dBm. As indicated, the conversion gain may increase for about 6 dB when the chip is connected to a 200Ω IF load. With a 16-QAM emulated WLAN OFDM digital signal (data rate=36Mbps, BW=20MHz), the measured EVM is 0.8/0.7/0.7% @ 40/500/900MHz, respectively. From the measured EVM values, the sensitivity is determined to be about -90.7dBm (@code-rate=1/2) and -85.6dBm (@code-rate=7/8).
[1] IEEE Std 802.11a/D7.0-1999, “Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5GHz Band.”
[2] ETSI, “Broadband Radio Access Networks (BRAN); HIPERLAN type 2 technical specification; Physical (PHY) layer,” Aug. 1999.
[3] http://www.cts.com.tw/dtv/about.htm
[4] S. Birleson et al., “Silicon single-chip television tuner technology,” ICCE Conference, pp. 38-39, June 2000.
[5] Larry Connell et al., “A CMOS broadband tuner IC,” ISSCC Digest of Technical Papers, vol. 2, pp. 324-529, Feb. 2002.
[6] Curtis Ling et al., “A low-power integrated tuner for cable-telephony applications,” ISSCC Digest of Technical Papers, vol. 1, pp. 330-471, Feb. 2002.
[7] Data sheet of SL2610, Zarlink Semiconductor, March 2004.
[8] 袁杰,高頻通信電路設計-振盪電路相鎖環路及頻率合成器,全華書局,民國八十三年。
[9] 廖哲宏,應用於IEEE 802.11a WLAN之5.7GHz CMOS射頻接收機及功率放大器RFICs,國立成功大學電機工程研究所碩士論文,民國九十二年。
[10] B. Razavi, et al. “Impact of distributed gate resistance on the performance of MOS devices,” IEEE Trans. Circuit and System I., vol.41, pp750-754, Nov. 1994.
[11] CIC教育訓練課程,Design of RF CMOS IC,民國九十一年。
[12] D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. of Solid-State Circuits, vol.32, No. 5, pp. 745-759, May 1997.
[13] T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 1998.
[14] 黃秋皇,應用於IEEE 802.11b/g無線區域網路之2.4GHz CMOS射頻接收機,國立成功大學電機工程研究所碩士論文,民國九十二年。
[15] Stephen Wu and Behzad Razavi, ”A 900MHz/1.8GHz Receiver for Dual-Band Applications,” IEEE J. Solid-State Circuit, Vol.33, No.12, pp2178-2185, December 1998.
[16] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[17] Robert R. Rotzoll, Allen, and Tex, “Highly integrated television tuner on a single microcircuit,” US patent 5,737,035, Apr. 1998.
[18] 張家豪,應用於數位電視調諧器雙工器與寬頻放大器之研究,國立交通大學電信工程學系碩士論文,民國九十二年。
[19] http://www.maxim-ic.com/appnotes.cfm/appnote_number/808
[20] Terry Edwards, Foundations for Microstrip Circuit Design, Wiley, 1991.
[21] D. E. Bockelman and W. R. Eisenstadt, “Combined differential and common-mode scattering parameters: theory and simulation,” IEEE Trans. Microwave Theory Tech., vol. 43, pp.1530-1539, July 1995.
[22] C. D Hull and G. B. Mayer, “Principle of monolithic wideband feedback amplifier design,” International Journal of High Speed Electronics, vol. 3, pp.53-93, Feb. 1992.
[23] David A. Johns and Ken Martin, Analog Integrated Circuits Design, Wiley, 1997.
[24] F. T Chien and Y.J. Chan, “Bandwidth enhancement of transimpedance amplifier by capacitive-peaking design,” IEEE J. Solid-State Circuits, vol. 34, pp. 1167-1170, Aug. 1999.
[25] Y. C. Chen and S. S. Lu, “Analysis and design of CMOS broadband amplifier with dual feedback loops,” ASIA-PACIFIC Conference on ASICs, Aug. 6-8, 2002.
[26] 周志遠,陸地數位電視廣播系統射頻接收調諧器之研製,國立中山大學電機工程研究所碩士論文,民國九十三年。
[27] 張凱貿,適用於WLAN和WCDMA雙模系統之可重置性射頻收發模組之系統模擬與其CMOS低雜訊放大器之設計,國立中正大學電機工程研究所碩士論文,民國九十三年。
[28] ETSI, “Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television (DVB-T)”, ETS 300 744, 1997.
[29] Peter Vizmuller, RF Design Guide: system, circuit and equations, Artech House, 1995.
[30] H. Hashemi and A. Hajimiri, “Concurrent dual-band CMOS low noise amplifiers and receiver architechtures,“ 2001 Symposium on VLSI Circuits Digest of Technical papers, pp.247-250, June 2001.
[31] H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers-theory, design, and applications,” IEEE Transactions on�n�nMicrowave Theory and Techniques�n, vol.50, No. 1, pp. 288-301, Jan. 2002.
[32] 郭信宏,應用於802.11 WLAN之2GHz及5GHz CMOS頻率合成器RFIC之設計研究,國立成功大學電機工程研究所碩士論文,民國九十三年。