簡易檢索 / 詳目顯示

研究生: 林茂聲
Lin, Mao-Sheng
論文名稱: 單開關串級式高升壓比直流-直流轉換器之研製
Study and Implementation of A Single Switch Cascading High Step-Up DC-DC Converter
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 67
中文關鍵詞: 串級式高升壓比耦合電感箝位電路
外文關鍵詞: cascade, high step-up, coupled-inductor, clamp circuit
相關次數: 點閱:92下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一新型高升壓比直流-直流轉換器,此轉換器使用單開關結合升壓型轉換器及一耦合電感型轉換器之串級式架構以獲得高電壓增益比。前半級為升壓型轉換器,後半級則為耦合電感與具回收漏感能量之箝位電路,減少切換開關上之跨壓,可選擇低耐壓和低導通電阻之開關元件,改善系統效率。本文先探討本轉換器架構之動作原理,並分析穩態特性。最後實作雛形電路,其電氣規格之輸入直流電壓為24 V,輸出為400 V/ 400 W,由實驗結果驗證轉換器之性能。

    In this thesis, a novel high step-up DC-DC converter is proposed. The proposed converter is constructed of a boost converter with a coupled inductor technique to achieve high step-up voltage gain by a single switch. The front semi-stage is a boost converter and the rear semi-stage utilizes the coupled inductor and clamp circuit to reduce the voltage stress on the power switch. Thus, the low voltage-rating switch with low conduction resistance can be used to improve the system efficiency. The operating principle and steady-state analysis of the proposed converter are discussed in detail. Finally, a laboratory prototype circuit of the proposed converter with 24 V input voltage and 400 V/400 W output is implemented to verify the performance of the proposed converter.

    目 錄 摘 要 I 誌 謝 III 目 錄 IV 表 目 錄 VII 圖 目 錄 VIII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 本文架構簡介 3 第二章 高升壓比直流-直流轉換器之架構簡介 4 2.1 單開關串級式升壓型轉換器 5 2.2 具箝位模式之耦合電感升壓型轉換器 6 2.3 具箝位模式之耦合電感降-升壓型轉換器 7 2.4 採疊接架構之升壓返馳型(Boost-flyback)轉換器 8 2.5 具耦合電感和主動箝位之降-升壓型轉換器 10 2.6 利用倍壓電路結合耦合電感之升壓型轉換器 11 2.7 具耦合電感之高升壓比轉換器 12 2.8 具倍壓電路與多繞組耦合電感之高升壓比轉換器 13 2.9 討論與比較 15 第三章 單開關串級式高升壓比直流-直流轉換器之電路原理 與效率分析 17 3.1 主電路架構 17 3.2 電路於穩態下之動作模式分析 20 3.2.1 連續導通模式 20 3.2.2 電路操作於連續導通模式之穩態分析 26 3.2.3 不連續導通模式 29 3.2.4 電路操作於不連續導通模式之穩態分析 35 3.3 轉換器操作於連續導通模式下之穩態效率分析 37 第四章 硬體電路参數設計與實驗結果分析 47 4.1 輸入電感與耦合電感之邊界曲線推導 48 4.2 儲能電容之設計 51 4.3 半導體元件耐壓和耐流之選擇 52 4.4 耦合電感與輸入電感之參數設計 54 4.5 實驗波形量測 56 4.6 加入同步二極體之效率比較 61 第五章 結論與未來展望 63 5.1 結論 63 5.2 未來展望 64 參考文獻 65 表 目 錄 表2.1 高升壓比轉換器特性比較表 16 表4.1電路之電氣規格表 47 表4.2 耦合電感之相關參數表 54 表4.3元件規格表 55 圖 目 錄 圖1.1 能源併入市電之系統架構 2 圖2.1 單開關串級式升壓型轉換器[21, 22] 5 圖2.2 具箝位模式之耦合電感升壓型轉換器[18] 6 圖2.3 具箝位模式之耦合電感降-升壓型轉換器[6] 7 圖2.4 採疊接架構之升壓返馳型轉換器[18, 24] 9 圖2.5 採疊接架構之升壓返馳型轉換器衍生架構[18] 9 圖2.6 具耦合電感與主動箝位之降-升壓型轉換器[25] 11 圖2.7 利用倍壓電路結合耦合電感之升壓型轉換器[26] 12 圖2.8 具耦合電感之高升壓比轉換器[27] 13 圖2.9 具倍壓電路與多繞組耦合電感之高升壓轉換器[28] 14 圖3.1 單開關串級式高升壓比直流-直流轉換器 18 圖3.2 電路操作於連續導通下之波形 20 圖3.3 連續導通下模式I之電流路徑圖 21 圖3.4 連續導通下模式II之電流路徑圖 22 圖3.5 連續導通下模式III之電流路徑圖 23 圖3.6 連續導通下模式IV之電流路徑圖 24 圖3.7 連續導通下模式V之電流路徑圖 25 圖3.8 不同轉換器下之電壓增益比較 28 圖3.9 電路操作於不連續導通下之波形 29 圖3.10 不連續導通下模式I之電流路徑圖 30 圖3.11 不連續導通下模式II之電流路徑圖 31 圖3.12 不連續導通下模式III之電流路徑圖 32 圖3.13 不連續導通下模式IV之電流路徑圖 33 圖3.14 不連續導通下模式V之電流路徑圖 34 圖3.15 考慮元件寄生效應下之等效模型 38 圖3.16 開關導通時考慮元件寄生效應下之等效模型 38 圖3.17 開關截止時考慮元件寄生效應下之等效模型 39 圖3.18 效率分析等效電路模型 42 圖3.19 化簡之效率分析等效電路模型 43 圖3.20 電壓增益曲線圖 45 圖3.21 效率分析曲線圖 45 圖4.1 實際硬體電路圖 48 圖4.2 輸入電感Lin之邊界曲線圖 49 圖4.3 耦合電感Lm之邊界曲線圖 50 圖4.4 輕載80 W時之實測波形 57 圖4.5 半載200 W時之實測波形 58 圖4.6 滿載400 W時之實測波形 59 圖4.7 輸出功率由80 W增加至400 W之動態響應 60 圖4.8 輸出功率由400 W減少至80 W之動態響應 60 圖4.9 輸出電壓漣波之實測波形 60 圖4.10 加入同步二極體之單開關串級式高升壓比直流-直流轉換器 61 圖4.11 本轉換器之效率曲線圖 62

    [1] W. Y. Choi, S. M. Kim, S. J. Park, K. H. Kim, and Y. C. Lim, “High step-up dc-dc converter with high efficiency for photovoltaic module integrated converter systems,” IEEE INTELEC, pp. 1-4, 2009.
    [2] J. M. Kwon, B. H. Kwon, and K. H. Nam, “High-efficiency module-integrated photovoltaic power conditioning system,” IET Power Electronics, vol. 2, no. 4, pp. 410-420, Mar. 2009.
    [3] R. J. Wai, W. H. Wang, and C. Y. Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 240-250, Jan. 2008.
    [4] R. J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Trans. on Circuits and Systems, vol. 55, no. 3, pp. 953-964, Apr. 2008.
    [5] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. on Power Electronics, vol. 20, no. 5, pp. 1025-1035, Sep. 2005.
    [6] Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc-dc converters,” IEEE Trans. on Power Electronics, vol. 18, no. 1, pp. 65-73, Jan. 2003.
    [7] W. Li, X. Lv, Y. Deng, J. Liu, and X. He, “A review of non-isolated high step-up dc/dc converters in renewable energy applications,” IEEE APEC, pp. 364-369, 2009.
    [8] R. J. Wai and W. H. Wang, “Design of grid-connected photovoltaic generation system with high step-up converter and sliding-mode inverter control,” IEEE CCA on Control Applications, pp. 1179-1184, 2007.
    [9] R. J. Wai, C. Y. Lin, and W. H. Wang, “Novel power control scheme for stand-alone photovoltaic generation system,” IEEE IECON, pp. 97-102, 2006.
    [10] W. Y. Choi, S. G. Song, S. J. Park, K. H. Kim, and Y. C. Lim, “Photovoltaic module integrated converter system minimizing input ripple current for inverter load,” IEEE INTELEC, pp. 1-4, 2009.
    [11] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc-dc pwm converters,” IEEE Trans. on circuits and systems, vol. 55, no. 2, pp. 687-696, Mar. 2008.
    [12] M. Prudente, L. L. Pfitscher, and R. Gules, “A boost converter with voltage multiplier cells,” IEEE PESC, pp. 2716-2721, 2005.
    [13] F. L. Luo and H. Ye, “Positive output cascade boost converters,” IEE Proc. Electric. Power Applications, vol. 151, no. 5, pp. 590-606, 2004.
    [14] W. Li and X. He, “High step-up soft switching interleaved boost converters with cross-winding-coupled inductors and reduced auxiliary switch number,” IET Power Electronics, vol. 2, no. 2, pp. 125-133, Nov. 2007.
    [15] R. Watson, F. C. Lee, and G. C. Hua, “Utilization of an active-clamp circuit to achieve soft switching in flyback converters,” IEEE Trans. on Power Electronics, vol. 11, no. 1, pp. 162-169, Jan. 1996.
    [16] R. J. Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency dc-dc converter with high voltage gain and reduced switch stress,” IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 354-364, Feb. 2007.
    [17] Y. He and F. L. Luo, “Analysis of Luo converters with voltage-lift circuit,” IEE Proc. Electric. Power Applications, vol. 152, no. 5, pp. 1239-1252, Sep. 2005.
    [18] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Proc. Electric. Power Applications, vol. 151, no. 2, pp. 182-190, Mar. 2004.
    [19] R. J. Wai, C. Y. Lin, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency power conversion system for kilowatt-level stand-alone generation unit with low input voltage,” IEEE Trans. on Industrial Electronics, vol. 55, no. 10, pp. 3702-3714, Oct. 2008.
    [20] W. Li, J. Wu, R. Xie, and X. He, “A non-isolated interleaved ZVT boost converter with high step-up conversion derived from its isolated counterpart,” EPE Power Electronics, pp. 1-8, 2007.
    [21] M. G. O. Lopez, J. L. Ramos, L. H. D. Saldierna, J. M. G. Ibarra, and E. E. C. Gutierrez, “Current-mode control for a quadratic boost converter with a single switch,” IEEE PESC, pp. 2652-2657, 2007.
    [22] J. A. M. Saldana, R. G. Quirino, J. L. Ramos, E. E. C. Gutierrez, and M. G. O. Lopez, “Multiloop controller design for a quadratic boost converter,” IET Electric. Power Applications, vol. 1, no. 3, pp. 362-367, Jan. 2007.
    [23] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched coupled-inductor cell for dc-dc converters with very large conversion ratio,” IEEE IECON, pp. 2366-2371, 2006.
    [24] Q. Zhao and F. C. Lee, “High performance coupled-inductor dc-dc converters,” IEEE APEC, vol. 1, pp. 109-113, 2003.
    [25] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “Boost converter with coupled inductors and buck-boost type of active clamp,” IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 154-162, Jan. 2008.
    [26] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, “High boost converter using voltage multiplier,” IEEE IECON, pp. 6, 2005.
    [27] R. J. Wai and R. Y. Duan, “High-efficiency dc/dc converter with high voltage gain,” IEE Proc. Electric. Power Applications, vol. 152, no. 4, pp. 793-802, Jul. 2005.
    [28] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up dc-dc converter for fuel cell energy conversion system,” IEEE Trans. on Industrial Electronics, vol. 57, pp. 2007-2017, May 2010.
    [29] I. Batarseh, Power Electronic Circuits, Johm Wiley & Sons, 2004.
    [30] 梁適安,高頻交換式電源供應器原理與設計 第二版,全華圖書股份有限公司,民國八十四年。
    [31] TL494Datasheet, Texas Instruments,2008.

    下載圖示 校內:2020-01-01公開
    校外:2020-01-01公開
    QR CODE