簡易檢索 / 詳目顯示

研究生: 嚴珮嘉
Yen, Pei-Chia
論文名稱: 以拍撲機構探討小翼羽及開衩翼尖之流體力學效應
Aerodynamic Effects of the Alula and Slotted Wingtips Using a Flapping-Wing Mechanism
指導教授: 葉思沂
Yeh, Szu-I
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 108
中文關鍵詞: 小翼羽開衩翼尖拍撲飛行PIV流場量測
外文關鍵詞: Alula, Slotted wingtips, Flapping mechanism, PIV
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以鳥類翅膀之小翼羽(Alula)與開衩翼尖(Slotted Wingtip)為靈感,探討其構造於拍撲翼非穩態條件下之流體力學效應。實驗採用具兩自由度之拍撲機構,分別控制翅膀之拍撲與旋轉運動,並搭配Mini40六軸力感測器進行氣動力量測,輔以粒子影像測速技術(Particle Image Velocimetry, PIV),觀察瞬時流場結構以及渦度分布,進一步探討拍撲運動中之流場行為。
    在力量測方面,首先驗證開衩翼尖於拍撲運動中對升力與阻力之氣動效益,接著分析搭配小翼羽後之變化,最後探討三種不同開衩翼尖構型(平面M1、漸增上反角M2、對稱上反角M3)於不同攻角條件下之性能差異。根據實驗結果顯示,開衩翼尖可有效提升升力並降低阻力,進而改善整體氣動效率;小翼羽亦可於全攻角範圍內穩定提升平均升力。開衩翼尖構型方面,M1於攻角60°時展現最佳升力表現與穩定性,而M2於45°攻角下則具有升力強化潛力,但於更高攻角下穩定性較低。
    進一步透過PIV流場觀測,發現M1與M2構型於其對應之過失速攻角(M1為60°、M2為45°)皆可在翼表面上發現穩定附著之翼前緣渦流結構(Leading-edge vortex, LEV),以維持升力表現;然而當攻角進入深度失速階段時,LEV則產生脫離與破碎現象,導致氣動性能快速下降。
    綜合實驗結果可知,小翼羽與開衩翼尖在過失速攻角條件下展現顯著氣動優勢,不僅有助於提升升力,亦能穩定流場結構。期望本研究成果對於仿生拍撲翼之氣動優化與高攻角操作策略提供參考與設計依據。

    This study investigates alula and slotted wingtips affect unsteady aerodynamics in flapping wings. A two-degree-of-freedom mechanism was built and tested in a water tank; aerodynamic forces were measured with a waterproof six-axis sensor, and instantaneous flow fields were visualized via particle image velocimetry (PIV). Angles of attack (AoA) of 30°, 45°, 60°, and 75° were selected to span pre-stall, post-stall, and deep-stall regimes. Three wingtip designs were compared while keeping planform, airfoil, and alula geometry fixed: M1(planar slotted wingtips), M2(gradual dihedral slotted wingtips), and M3 (symmetric dihedral slotted wingtips).
    Force measurements show that slotted wingtips e provide a dual benefit, raising mean lift and lowering mean drag thereby improving overall flapping efficiency. Adding an alula yields a stable lift increase at all tested AoA with smooth, non-oscillatory lift histories. However, performance depends strongly on wingtip geometry: M2 achieves peak lift at 45° but loses stability by 60°, whereas M1 sustains higher lift and efficiency at 60° and remains more robust at 75°. M3 provides no clear advantage, producing higher drag and weaker lift overall.
    Flow visualization clarifies the mechanisms underlying these trends. At effective operating points (M1 at 60°, M2 at 45°), a coherent, attached leading-edge vortex (LEV) forms and persists, sustaining lift and delaying separation. At higher AoA, the LEV detaches and fragments, marking deep stall and rapid performance degradation.
    Overall, the findings demonstrate that alula-assisted lift augmentation and slotted-tip drag relief are most effective in the post-stall regime, while planar slots offer superior robustness at high AoA.

    摘要I ABSTRACTII 誌謝XII 目錄XIII 表目錄XVI 圖目錄XVII 符號索引XXII 第1章 緒論1 1.1 前言1 1.2 研究動機與目的3 第2章 文獻回顧4 2.1 拍撲空氣動力學5 2.1.1 名詞解釋5 2.1.2 延遲失速效應7 2.1.3 質量附加效應9 2.1.4 旋轉環流效應10 2.1.5 翼尾流交互作用11 2.2 鳥類形態學13 2.2.1 翅膀結構13 2.2.2 羽毛形態14 2.2.3 翅膀形態16 2.3 特殊構造氣動力分析17 2.3.1 小翼羽相關研究17 2.3.2 開衩翼尖相關研究20 2.4 小結24 第3章 研究方法25 3.1 實驗裝置設計26 3.1.1 確定研究對象26 3.1.2 參數因次分析27 3.1.3 機構尺寸設計30 3.1.4 翅膀模型設計33 3.1.5 翅膀模型製作37 3.1.6 拍撲機構設計38 3.2 機構動作設計40 3.2.1 機構控制設計40 3.2.2 動作角度設計41 3.3 實驗器材架設44 3.3.1 實驗變因參數44 3.3.2 實驗環境架設45 3.3.3 空氣動力量測46 3.3.4 粒子影像測速48 第4章 結果與討論52 4.1 力量測實驗結果53 4.1.1 開衩翼尖結構之氣動效應55 4.1.2 小翼羽結構之氣動力效應58 4.1.3 開衩翼尖構型之失速區間分析60 4.1.4 平面與非平面開衩翼尖構型對氣動力之影響65 4.1.5 小結70 4.2 粒子影像測速實驗結果71 4.2.1 小翼羽流場分析72 4.2.2 平面/非平面開衩翼尖構型流場分析74 4.2.3 小結77 第5章 結論與未來展望78 5.1 結論78 5.2 未來展望79 參考文獻80

    [1]Festo, “BionicSwift: Safe aerial acrobatics as a swarm,” Jul. 22, 2019.
    [2]E. Brothers, “Airbus unveils hybrid-electric regional airliner concept,” Jul. 22, 2019.
    [3]H.-Y. Kim, J.-S. Han, and J.-H. Han, Aerodynamic effects of deviating motion of flapping wings in hovering flight, Bioinspiration & Biomimetics, vol. 14, no. 2, Art. 026006, 2019
    [4]B. W. Tobalske and K. P. Dial, “Flight kinematics of black-billed magpies and pigeons over a wide range of speeds,” Journal of Experimental Biology, vol. 199, no. 2, pp. 263–280, 1996.
    [5]D. Lentink and M. H. Dickinson, “Rotational accelerations stabilize leading edge vortices on revolving fly wings,” Journal of Experimental Biology, vol. 212, no. 16, pp. 2705–2719, 2009.
    [6]D. D. Chin and D. Lentink, “Flapping wing aerodynamics: From insects to vertebrates,” Journal of Experimental Biology, vol. 219, no. 7, pp. 920–932, 2016.
    [7]M. R. Nabawy and W. J. Crowther, “The role of the leading edge vortex in lift augmentation of steadily revolving wings: A change in perspective,” Journal of the Royal Society Interface, vol. 14, no. 132, 2017.
    [8]J. A. Walker, “Rotational lift: Something different or more of the same?,” Journal of Experimental Biology, vol. 205, no. 24, pp. 3783–3792, 2002.
    [9]Z. A. Khan and S. K. Agrawal, “Force and moment characterization of flapping wings for micro air vehicle application,” in Proc. American Control Conference, pp. 2005–2010, 2005.
    [10]Q. T. Truong, Q. V. Nguyen, V. T. Truong, H. C. Park, D. Byun, and N. S. Goo, “A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system,” Bioinspiration & Biomimetics, vol. 6, no. 3, Art. 036008, 2011.
    [11]M. H. Dickinson, F.-O. Lehmann, and S. P. Sane, “Wing rotation and the aerodynamic basis of insect flight,” Science, vol. 284, no. 5422, pp. 1954–1960, 1999.
    [12]L. Liu and M. Sun, “The added mass forces in insect flapping wings,” Journal of Theoretical Biology, vol. 437, pp. 45–50, 2018.
    [13]S. P. Sane and M. H. Dickinson, “The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight,” Journal of Experimental Biology, vol. 205, no. 8, pp. 1087–1096, 2002.
    [14]R. J. Bomphrey, “Advances in animal flight aerodynamics through flow measurement,” Evolutionary Biology, vol. 39, no. 1, pp. 1–11, 2012.
    [15]J. M. Birch and M. H. Dickinson, “The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight,” Journal of Experimental Biology, vol. 206, no. 13, pp. 2257–2272, 2003.
    [16]K. B. Lua, T. Lim, and K. Yeo, “Effect of wing–wake interaction on aerodynamic force generation on a 2D flapping wing,” Experiments in Fluids, vol. 51, pp. 177–195, 2011.
    [17]M. R. Ito, “An experimental study of a leading-edge alula-inspired device (LEAD) for moderate aspect ratio wings at low Reynolds numbers,” M.S. thesis, 2018.
    [18]Peruaves, “Bird morphology.” Jul. 17, 2025.
    [19]U.S. Fish & Wildlife Service, The Feather Atlas: Flight Feathers of North American Birds. Aug. 20, 2025.
    [20]S. Podulka, R. W. Rohrbaugh, and C. Bonney, Handbook of Bird Biology, Ithaca, NY, USA: Cornell Lab of Ornithology, 2004.
    [21]S.-I. Lee, J. Kim, H. Park, P. G. Jabłoński, and H. Choi, “The function of the alula in avian flight,” Scientific Reports, vol. 5, pp. 1–5, 2015.
    [22]B. A. Mandadzhiev, “Design and aerodynamic analysis of an airfoil with a bioinspired leading edge device for stall mitigation at low Reynolds number operation,” M.S. thesis, Univ. of Illinois at Urbana–Champaign, 2017.
    [23]M. Lynch, B. Mandadzhiev, and A. Wissa, “Bioinspired wingtip devices: A pathway to improve aerodynamic performance during low Reynolds number flight,” Bioinspiration & Biomimetics, vol. 13, no. 3, Art. 036003, 2018.
    [24]M. Fluck, and Crawford, C. “A lifting line model to investigate the influence of tip feathers on wing performance,” Bioinspiration & Biomimetics, 9, 046017,2014.
    [25]M. KleinHeerenbrink, L. C. Johansson, and A. Hedenström, “Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight,” Journal of the Royal Society Interface, vol. 14, no. 130, 2017.
    [26]鍾秉翰, “仿小翼羽渦流產生器對定翼及旋翼的效應探討,” 碩士論文, 成功大學航空太空工程學系, 2021.
    [27]溫登元, “以仿生撲翼機構分析開衩翼尖於拍翅飛行之氣動力效應,” 碩士論文, 成功大學航空太空工程學系, 2020.
    [28]張銘文, “鳥類小翼羽與開衩翼尖之空氣動力學效應,” 碩士論文, 成功大學航空太空工程學系, 2023.
    [29]O. R. Falch, “White-tailed eagle in snow,” Pexels, Jul. 22, 2019.
    [30]J. Alvarez, J. Meseguer, E. Meseguer, and A. Pérez, “On the role of the alula in the steady flight of birds,” Ardeola, vol. 48, no. 2, pp. 161–173, 2001.
    [31]F. Manar, A. Medina, and A. R. Jones, “Tip vortex structure and aerodynamic loading on rotating wings in confined spaces,” Experiments in Fluids, vol. 55, pp. 1–18, 2014.
    [32]J.-S. Han, J. W. Chang, and H.-K. Cho, “Vortices behavior depending on the aspect ratio of an insect-like flapping wing in hover,” Experiments in Fluids, vol. 56, no. 9, pp. 1–16, 2015.
    [33]T. J. Mueller, “Aerodynamic measurements at low Reynolds numbers for fixed wing micro-air vehicles,” in RTO AVT/VKI Special Course on Development and Operation of UAVs for Military and Civil Applications, Sep. 1999.
    [34]K. Koca, M. S. Genç, H. H. Açikel, M. Çağdaş, and T. M. Bodur, “Identification of flow phenomena over NACA 4412 wind turbine airfoil at low Reynolds numbers and role of laminar separation bubble on flow evolution,” Energy, 2017.
    [35]C. Karoullas, “The role of Eocene climatic and environmental changes in avian diversification and evolution,” Ph.D. dissertation, Univ. Manchester, 2021.
    [36]H. Bao, H. Zhao, M. Sun, et al., Aerodynamic performance of flapping wing with alula under different kinematics of complex flapping motion, J. Exp. Biol., vol. 19, no. 1, Art. 016009, 2024.
    [37]A. M. Rayhan, M. S. Hossain, R. H. Mim, and M. Ali, “Computational and experimental study on the aerodynamic performance of NACA 4412 airfoil with slot and groove,” Heliyon, vol. 10, p. e31595, 2024.
    [38]B. Cheng, J. I. Müller, S. Schlüter, A. M. Ros, and M. A. R. Fernández, Flight mechanics and control of escape manoeuvres in hummingbirds. I. Flight kinematics, Journal of Experimental Biology, vol. 219, no. 22, pp. 3518–3531, 2016.

    無法下載圖示 校內:2030-08-25公開
    校外:2030-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE